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EXECUTIVE SUMMARY 

This Illinois Center for Transportation (ICT) report (R27-SP38) presented results from a study 
conducted at ICT and the Illinois Department of Transportation (IDOT) Central Bureau of Materials 
(CBM) to investigate the freeze-thaw and wet-dry durability behavior of chemically stabilized 
applications of quarry by-products (QB) in flexible pavements. The QB applications investigated for 
durability were previously evaluated for field performance using Accelerated Pavement Testing (APT) 
in the ICT-R27-168 project. From the field evaluations, the chemically stabilized QB applications could 
provide economical and sustainable bases and subbases for flexible pavements with observed 
satisfactory performance trends in terms of adequate strength/stiffness and resistance to rutting and 
fatigue. The ICT-R27-168 project recommended these applications to be evaluated for wet-dry and 
freeze-thaw durability before they could be considered readily implementable and incorporated in 
standard practices for road construction by IDOT. Thus, this project ICT-R27-SP38 followed up on a 
research effort to investigate the stabilized QB mixture durability, which is a key aspect for evaluating 
long-term field performances of pavement layer applications. The constructed field test sections 
provided a unique opportunity to collect field samples to check their durability aspects under 
climatic/seasonal variations of temperature (freeze-thaw) and moisture (wet-dry) conditions. 

The base and subbase applications of QB studied involved 3% cement- or 10% fly ash–stabilized QB 
materials and QB blends with recycled coarse aggregates, namely Fractionated Reclaimed Asphalt 
Pavements (FRAP) or Fractionated Reclaimed Concrete Aggregates (FRCA). Blending ratios of 70% QB 
and 30% FRAP/FRCA were investigated. Two QB sources used in the R27-168 project were also 
utilized in this durability study. These are denoted by QB2 and QB3 hereafter. In total, 56 samples 
were tested for wet-dry and freeze-thaw durability. Half of the samples were newly prepared 
samples in the laboratory, while the other half was extracted from seven full-scale field test sections 
studied in the ICT-R27-168 project. Attempts were made without much success to extract cores from 
the field test sections. At the end, large slabs of the chemically stabilized QB layers were extracted 
and cuboid prisms were saw-cut with the dimensions of an inscribed cuboid fitting in the standard 
Proctor compaction mold. Freeze-thaw and wet-dry durability tests were conducted as per AASHTO T 
136 and T 135, respectively. Both standards involve firm brushing of samples using a steel wire brush. 
A brushing pattern was selected such that all areas in each sample received at least two firm brushing 
strokes at each cycle of testing. After each cycle of durability testing, samples were weighed to 
calculate the brushed losses and the cumulative percentages of soil-cement loss. Note that for the 
purposes of this report, soil-cement loss refers to soil-modifier loss in the samples that had either 
cement or fly ash used as the chemical modifier. 

All cement- and fly ash–stabilized laboratory samples and all cement-stabilized field samples tested 
for wet-dry durability by AASHTO T 135 survived the standard 12 cycles of wetting and drying by 
accumulating less than 10% soil-cement loss. From the freeze-thaw durability testing by AASHTO T 
136, some of the samples had layer separation and significant deterioration at early stages of testing, 
which prevented the completion of tests with the requirement of further brushing. In such occasions, 
the results for soil-cement loss were extrapolated by curve fitting the data to provide an estimate of 
the soil-cement loss after 12 cycles. An estimate for the final corrected moisture content at the end 
of wet-dry and freeze-thaw durability testing was provided for each tested sample. The final moisture 
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content was corrected for the water of hydration of cement, which was considered 1/4 of the percent 
cement in the specimen for cement-stabilized samples and zero for fly ash–stabilized samples. 

Considering the investigation of the durability aspects of seven sustainable QB applications, 
satisfactory wet-dry and freeze-thaw durability test results were observed for cement-stabilized QB2 
materials or QB2 blended with coarse-recycled aggregates. Wet-dry durability resulted in lower 
percentages of soil-cement loss compared to freeze-thaw durability for the majority of laboratory and 
field samples, indicating that the AASHTO T 136 freeze-thaw durability is a harsher and more 
destructive test for chemically stabilized QB materials. Both cement-and fly ash–stabilized laboratory 
samples and all cement-stabilized field samples had satisfactory wet-dry durability. Fly ash–stabilized 
field samples accumulated high (17.6%–18.6%) soil-cement loss after 12 cycles of wet-dry durability 
testing, indicating poor performance.  

One key finding of the durability tests is that the chemical composition of the QB material can 
influence the durability of the investigated sustainable QB applications, particularly when long-term 
durability (i.e. several years of service) is considered. QB2 material with higher percentages of 
dolomitic fines had more long-term strength gain and better durability than QB3 material, which had 
higher percentages of calcium limestone fines. The presence of dolomitic fines might have 
significantly increased the long-term durability of the field samples; which needs to be further 
investigated. Density and packing were also found to affect the durability of the samples, where 
samples achieving a density significantly lower than the maximum dry density had poor performance. 

Unconfined Compressive Strength (UCS) tests were also conducted concurrently with durability 
testing to ascertain that both durability and strength requirements were studied together for 
sustainable QB pavement applications and checked against IDOT requirements and specifications. In 
addition, the UCS tests served as a check for material mechanical property variability, particularly 
with stabilizing agents, between the newly molded laboratory samples and the materials that were 
previously used to construct the test sections for ICT-R27-168, since these material combinations 
were also tested in the laboratory for UCS prior to using them in constructing field test sections. 
Possible trends observed between durability and unconfined compressive strength characteristics of 
different material combinations were somewhat inconclusive. This warrants the need for further and 
more extensive investigations on the cementation type improvement observed with dolomitic fines 
and identifying related mechanisms of long-term strength and durability characteristics. 
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CHAPTER 1: INTRODUCTION 

1.1 BACKGROUND AND MOTIVATION 

Quarry by-products (QB) are an industrial by-product of aggregate quarry processes. They are 
typically less than 1/4 in. (6 mm) in size and consist of coarse, medium, and fine sand particles and a 
small clay/silt fraction. Quarry by-products are found abundantly at crushed-rock extraction facilities 
in Illinois, where they are produced during blasting, crushing, washing, and screening operations. 
Excess QB produced each year exceeds 950,000 tons according to a questionnaire responded to by 20 
of the largest quarries in Illinois in the research study ICT-R27-125 (Tutumluer et al., 2015). 

Work conducted at the Illinois Center for Transportation (ICT) has evaluated the characteristics of QB 
materials collected from different quarries across Illinois and studied potential uses of QB in 
pavement applications. As part of an ICT project to characterize QB materials (R27-125), a detailed 
laboratory study was conducted to characterize the engineering properties of QB materials produced 
in the primary, secondary, and tertiary aggregate production stages from four quarries operating in 
Illinois. Property tests were performed for determining aggregate gradation, particle shape 
characteristics, and mineralogical analysis of the QB samples. Differences in shape and gradation 
properties of QB materials produced in each crushing stage were observed (Tutumluer et al., 2015). 
Because the Unconfined Compressive Strength (UCS) for QB materials was low (less than 11 psi or 76 
kPa), Portland cement and Class C fly ash chemical admixture stabilizers were used to improve the 
strength properties of QB materials. For the chemically stabilized QB samples, a 2% cement or 10% 
Class C fly ash increased the UCS by 10 to 30 times compared to virgin unstabilized QB samples. Such 
significant increases observed in the strength of stabilized QB materials have indicated suitability of 
QB for sustainable pavement applications (Tutumluer et al., 2015; Mwumvaneza et al., 2015). 

More recently, a follow-up project was conducted to further investigate the field performance of QB 
materials in pavement applications. The project ICT-R27-168 evaluated new sustainable applications 
of QB or QB mixed with marginal (i.e. primary crusher run aggregates), virgin, or recycled aggregate 
materials in unbound and chemically stabilized pavement layers tested under realistic wheel loads 
and environmental conditions (Qamhia et al., 2018; Qamhia et al., 2019). Sixteen full-scale test 
sections were evaluated for performance of QB materials used in base, subbase, and aggregate 
subgrade applications. QB materials obtained from three different sources in Illinois were utilized for 
this study. The chemically stabilized QB applications were stabilized with 3% cement or 10% Class C 
fly ash and were constructed over a subgrade having an Immediate Bearing Value (IBV) of 6%. The 
unbound applications investigated the use of QB to fill the voids between large aggregate subgrade 

rocks commonly used for rockfill applications on top of very soft subgrade soils (IBV ≤ 1%) as well as 
using dense-graded aggregate subgrade layers with higher QB fines content (up to 15% passing No. 
200 sieve) for soft subgrade remediation. The test sections were evaluated for performance using 
Accelerated Pavement Testing (APT), and other forensic analysis techniques such as Falling Weight 
Deflectometer (FWD) tests before and after trafficking, Hot-Mix Asphalt (HMA) coring, Dynamic Cone 
Penetrometer (DCP) profiling of subsurface layers, and trenching, to determine actual thicknesses 
and contribution of each pavement layer to the measured surface rutting. In general, results from 
APT and forensic analyses indicated satisfactory results and improved rutting performance for the 
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investigated QB applications. The improved performance was quantified through lower surface rut 
measurements, lower surface deflection measurements with FWD, and higher layer strength profiles 
measured with DCP (Qamhia et al., 2018; Qamhia et al., 2019).  

Previous QB research conducted at ICT has proven the satisfactory pavement performance and 
promising usage for abundant quantities of stabilized quarry by-product materials in pavements. 
Detailed findings on the surface rut profiles are presented in Chapter 2. This is both environmentally 
friendly and economical to advocate more sustainable pavement construction with QB materials. For 
the QB applications of the project ICT-R27-168 to be deemed readily implementable, durability 
aspects, i.e. wet-dry and freeze-thaw durability, need to be thoroughly investigated to establish the 
performance of chemically stabilized QB pavement layers under variations in climatic conditions, 
particularly freezing-thawing cycles during winter and wetting-drying conditions. When proper 
recommendations and mix designs are established for designing QB layers to consider these 
durability aspects, the use of QB and QB blends with recycled coarse aggregates can be successfully 
incorporated into IDOT’s standard pavement construction and rehabilitation practices. Therefore, the 
purpose of this project (ICT-R27-SP38) was to investigate the freeze-thaw and wet-dry durability 
aspects for various stabilized QB and QB-blend applications using the standard AASHTO T 136 and 
AASHTO T 135 test procedures, respectively.  

1.2 OBJECTIVE AND SCOPE 

The main objective of this project was to investigate the freeze-thaw and wet-dry durability 
performances for quarry by-product materials and mixtures of quarry by-products with recycled 
aggregates used as base and subbase materials in sustainable pavement applications. The seven QB 
applications investigated for durability aspects entailed samples of 100% QB and samples of 70% QB 
blended with 30% coarse Fractionated Reclaimed Asphalt Pavements (FRAP) or Fractionated Recycled 
Concrete Aggregates (FRCA). Samples were stabilized with 3% cement or 10% fly ash. The samples 
investigated for durability represent base and subbase QB applications that were previously 
evaluated for field performance in Accelerated Pavement Testing (APT). Field samples were collected 
from base and subbase test sections previously built and tested as part of the recent project ICT-R27-
168. Further, laboratory test samples were molded and tested for their durability aspects (wet-dry 
and freeze-thaw) and UCS. The durability tests were conducted at IDOT Central Bureau of Materials 
(CBM). All material collection, sample preparation, and UCS testing were conducted at the University 
of Illinois laboratories and testing facilities. 

1.3 STUDIED QUARRY BY-PRODUCT APPLICATIONS 

In total, seven bound applications of aggregate QB mixtures were evaluated for durability aspects and 
UCS. These QB applications and mixtures were selected based on successful outcomes of previous 
studies that provided evaluations of QB materials in laboratory and field testing (Tutumluer et al. 
2015; Qamhia et al. 2018; Qamhia et al., 2019). Both field-extracted and laboratory-molded samples 
with these material combinations were studied for wet-dry and freeze-thaw durability aspects.  
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The investigated material combinations with sustainable QB applications can be broadly divided into 
the following three categories: 

• Stabilized base with recycled coarse aggregate—Blending QB with coarse aggregate 
fractions of recycled materials FRAP and FRCA and stabilizing the blends with cement or 
Class C fly ash for base applications. Three applications were investigated under this 
category, namely: QB-FRAP-cement, QB-FRCA-cement, and QB-FRAP-fly ash mixtures. 

• Stabilized base—Using QB as a cement-treated base material. Two applications were 
investigated under this category entailing two QB materials from different quarries and 
having different chemical compositions mixed with cement. 

• Stabilized subbase in an inverted pavement—Using QB as a cement or fly ash–treated 
subbase. Two applications were investigated under this category using QB from the same 
source, namely, QB-cement and QB-fly ash mixtures. 

In addition to the material combinations listed above and given the grain size distribution of the FRCA 
material that had particles up to 1.5 in. (37 mm) in size, a material combination of QB with no FRCA 
material larger than 3/4 in. (19 mm) was also molded in the laboratory to eliminate any effect of large 
FRCA particle on durability results. This step was applied to test materials that complied with the 
gradation requirements of the standard test methods used in wet-dry and freeze-thaw durability in 
this study. 

1.4 REPORT ORGANIZATION 

This report consists of five chapters, including this introductory chapter. 

Chapter 2, titled “Literature Review,” provides a brief review of the previous studies associated with 
using QB and recycled materials in pavement applications, particularly literature for past research 
that evaluated the durability of QB materials and QB blended with recycled aggregates. 

Chapter 3, titled “Sample Preparation and Testing,” provides a discussion of material selection and 
sample preparation and testing. This chapter presents details for the extraction and saw-cutting of 
the field samples and the molding and curing of laboratory samples for durability and UCS testing. 
The assumptions made during and after testing as well as sample performance during wet-dry and 
freeze-thaw durability testing are summarized in detail in this chapter. 

Chapter 4, titled “Results and Interpretations,” provides details of sample performance under 
durability and UCS testing. Results for wet-dry durability by AASHTO T 135 and freeze-thaw durability 
by AASHTO T 136 are presented and discussed in detail. The durability aspects and UCS 
characteristics of the freshly molded laboratory samples cured for seven days were compared with 
those of field-extracted samples that were left to cure for three years. The field-extracted samples 
were exposed to several cycles of freezing-thawing and wetting-drying over three harsh winters and 
rainy summers prior to extraction and testing in this project. 
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Chapter 5, titled “Summary and Conclusions,” provides a summary of the test results, the main 
recommendations, and conclusions from the durability evaluations of QB applications. This chapter 
also discusses promising implementation projects as the next steps to further study, as well as some 
recommendations for future research. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 INTRODUCTION 

The importance of utilizing aggregate quarry by-products (QB) in pavement applications stems from 
the vast quantities that are produced and remain in excess within many quarries each year. QB 
stockpiling and disposal is a serious issue facing the aggregate industry, as they accumulate in 
stockpiles and interfere with quarry operations (Hudson et al., 1997). A report by the Federal 
Highway Administration estimated the quantity of quarry by-products generated in the United States 
each year to exceed 175 million US tons (159 million metric tons), little of which is being put into use 
for pavement applications (Chesner et al., 1998). The same report also estimated that aggregate QB 
accumulation in the US alone exceeded 4.0 billion US tons (3.6 billion metric tons) from the 3,000 
operating quarries. In Illinois, where this research was conducted, the annual production of crushed 
stone QB was estimated through a survey conducted among aggregate producers in the state and 
was found to be as high as 950,000 US short tons (855,000 tons) (Tutumluer et al., 2015). Research 
conducted by Kumar and Hudson (1992) showed that stockpiled fines comprised an average of 
approximately 12% of the total annual aggregate production. More recently, NCHRP Synthesis 435 
(Volume 4) reported that, depending on the type of rock quarried, QB could make up to 25% of the 
total aggregates produced (Stroup-Gardiner & Wattenberg-Komas, 2013).  

Given these massive quantities, and the negative environmental/economic consequences that result 
from QB accumulation at quarries, the investigation of successful applications of QB as a sustainable 
and inexpensive construction alternative for pavements has become imperative. For successful 
implementation of QB applications, comprehensive research needs to be conducted to understand 
the performance and the economic and sustainable aspects of QB usage, which requires laboratory 
and field evaluation of these materials. The research project ICT-R27-125, titled “Sustainable 
Aggregates Production: Green Applications for Aggregate By-Products,” focused earlier on the 
laboratory characterization of unbound and chemically stabilized QB materials (Tutumluer et al., 
2015). The recent project ICT-R27-168, titled, “Field Performance Evaluations of Sustainable 
Aggregate By-Product Applications,” evaluated the field performance trends of 16 sustainable QB 
applications with accelerated pavement testing (Qamhia et al., 2018). This ICT-R27-SP38 project 
intends to evaluate the durability of QB applications under varying seasonal/climatic temperature 
and moisture variations resulting in freeze-thaw and wet-dry cycles. 

2.2 PAST QB RESEARCH AT ICT 

Prior to conducting this durability study, several studies were conducted at the Illinois Center of 
Transportation (ICT) and the Advanced Transportation Research and Engineering Laboratory (ATREL) 
of the University of Illinois to study QB materials. As part of the project ICT-R27-125, several QB 
materials were collected from different crushing stages from four quarries in Illinois and were tested 
for their physical and mechanical properties. Atterberg limits testing was conducted in accordance 
with the ASTM D4318 method, and all four QB sources were found to have relatively low liquid limits 
and had essentially nonplastic fines passing the No. 40 (0.42 mm) sieve (Tutumluer et al., 2015). This 

https://apps.ict.illinois.edu/projects/getfile.asp?id=3507
https://apps.ict.illinois.edu/projects/getfile.asp?id=3507
https://apps.ict.illinois.edu/projects/getfile.asp?id=7672
https://apps.ict.illinois.edu/projects/getfile.asp?id=7672
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study also reported that the compressive strength properties of untreated QB could be relatively low 
and recommended stabilizing QB materials for pavement applications. 

Further, Tutumluer et al. (2015) concluded that the harmful clay content of QB materials was 
generally less than 3% for different sources and crushing stages. The same study reported that QB 
from primary crushing stages generally comprised higher contents of harmful clay. Direct shear tests 
were performed in accordance with ASTM D3080 on QB materials selected from different crushing 
stages in the same quarry. The friction angles obtained for primary, secondary, and tertiary crusher 
QB samples were rather high around 59 degrees (Tutumluer et al., 2015). The same study conducted 
UCS tests on 10% Class C fly ash and 2% Portland cement–stabilized QB samples and observed that 
the chemically stabilized QB specimens exhibited up to 30 times strength improvement when 
compared with untreated QB materials (Mwumvaneza et al., 2015; Tutumluer et al., 2015). The 
results of the study are presented in Figure 2.1. Note that Q1–Q3 shown in Figure 2.1 do not 
correspond, in the same order, to QB1–QB3 naming for the QB sources utilized in the R27-SP38 and 
R27-168 projects. 

 

Figure 2.1. Average UCS for virgin, 2% cement-, and 10% Class C fly ash–treated QB materials.  
1 psi = 6.9 kPa. (Source: Tutumluer et al., 2015) 

In a laboratory study conducted by LaHucik et al. (2016a, 2016b), various proportions of cement-
treated mixes of QB and Fractionated Reclaimed Asphalt Pavement (FRAP) or virgin coarse aggregates 
were evaluated. Based on aggregate packing tests conducted with different proportions of QB and 
FRAP by weight, an optimal blending ratio of 70% QB with 30% FRAP was found to maximize 
density/minimize void content. LaHucik et al. (2016b) also evaluated mix-design performances 
through strength tests (compression/split tension) and modulus tests. Higher cement content 
increased both the strength and elastic modulus properties of all the tested mixes. Mixtures 
containing virgin aggregates with QB yielded statistically greater elastic moduli than mixtures with 
FRAP and QB. Fibers were used as additives in some of the mixtures. From statistical analysis, the 
fibers did not have considerable influence on strength or elastic modulus but did provide residual 
shear capacity across cracks. The QB and FRAP or QB and virgin aggregate mixtures with 3% to 4% 



7 

cement content exceeded the strength of typical cement-stabilized base materials reported in the 
literature. More details about this study including the performed statistical analysis are presented in 
LaHucik et al. (2016a, 2016b). Test results for UCS, split tensile strength, and resilient modulus are 
detailed in Figure 2.2. For the naming of samples, the first number (e.g. 2) refers to the percentage of 
cement by volume; the second letter (R or V) refers to Recycled or Virgin coarse aggregates, 
respectively; while the third letter (F or N) refers to “Fibers used” or “Not used” during sample 
preparation.  

 

(a) 

  

(b) (c) 

Figure 2.2. Results for (a) UCS, (b) split tensile strength, and (c) elastic modulus for QB samples 
blended with FRAP or virgin aggregates. 1 MPa = 145 psi. (Source: LaHucik et al., 2016a) 

A more recent project, ICT-R27-168, focused on evaluating new sustainable applications of Quarry By-
products (QB) or QB mixed with aggregate subgrade (i.e. primary crusher run aggregates) and other 
virgin or recycled aggregate materials in pavements as unbound or chemically stabilized pavement 
layers. Sixteen full-scale test sections, including seven test sections with stabilized QB applications, 
were constructed to evaluate the use of QB in base, subbase, and aggregate subgrade applications. 
The chemically stabilized test sections utilizing QB were stabilized with 3% cement or 10% Class C fly 
ash by dry weight and were constructed over a subgrade having an engineered unsoaked Immediate 
Bearing Value (IBV) of 6% to study their effectiveness in low- to medium-volume flexible pavements. 
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The unbound applications of QB investigated (i) the use of QB to fill the voids between large 
aggregate subgrade rocks commonly used for rockfill applications on top of soft subgrade soils and (ii) 
the dense-graded aggregate subgrade layers with higher fines content up to 15% passing No. 200 
sieve for soft subgrade remediation. All field test sections were then evaluated for rutting and fatigue 
performance by applying traffic loading using a super single wheel in Accelerated Pavement Testing 
(APT) (Qamhia et al., 2018; Qamhia et al., 2019; Qamhia, 2019). Results of surface rutting 
accumulation from the 12 flexible pavement test sections are presented in Figure 2.3. Note that the 
seven pavement sections (C2S1–C3S3) with stabilized QB applications (see Figure 2.3) that showed 
better performance and were tested up to 135,000 cycles have been the subject for investigation for 
wet-dry and freeze-thaw durability in this project. A detailed description of the materials and layer 
thicknesses are presented in Table 2.1. Sections C2S1–C3S3 from which durability samples were 
extracted are indicated in bold in Table 2.1. Three QB materials, i.e. QB1, QB2, and QB3, obtained 
from three quarries in Illinois were utilized.  

Following APT, forensic analysis tests were conducted to further evaluate test section performances. 
These tests included Falling Weight Deflectometer (FWD) tests before and after trafficking, hot-mix 
asphalt coring, Dynamic Cone Penetrometer (DCP) profiling of subsurface layers, and trenching to 
expose the cross sections of the constructed sections. In general, results from the APT and forensic 
analyses indicated that satisfactory results and improved rutting performance (less than 0.5 in. or 
12.5 mm of rutting after 135,000 load repetitions) were obtained from all test sections utilizing QB 
applications (Qamhia et al., 2018). Therefore, the proposed QB applications were deemed to be 
readily implementable and can be successfully incorporated into standard pavement construction 
and rehabilitation practices, given that their durability aspects are better studied and understood. 
This project focuses mainly on the investigation of the durability aspects of the stabilized QB 
applications, i.e. C2S1–C3S3, evaluated in the ICT-R27-168 study.  

 

Figure 2.3. Surface wheel path rut accumulations of test sections with the  
QB applications studied in project ICT-R27-168.  
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Table 2.1. Descriptions of QB Applications Studied in Project ICT-R27-168  
(Flexible Pavement Applications) 

Section 
ID 

QB Field 
Application 

Description / Material Combination Pavement Cross Section 

C1S1 
Aggregate 
Subgrade 

Primary Crusher Run (PCR) rocks with 
25% QB1 filling the voids; constructed in 
two lifts 

  
             C1S1–C1S4 

C1S2 
Aggregate 
Subgrade 

(PCR) rocks with 16.7% QB1 filling the 
voids; constructed in one lift 

C1S3 
Aggregate 
Subgrade 

Dense-graded CA06 aggregates with 
15% plastic fines content (passing No. 
200 sieve) with a plasticity index (PI) of 8  

C1S4 
Aggregate 
Subgrade 

Dense-graded CA06 aggregates with 
15% nonplastic (PI=0) fines content 

C2S1* 
Stabilized 

Base with FRAP 

A blend of 70% QB2 and 30% FRAP, 
stabilized with 3% Type I cement 

 

     
             C2S1–C2S4, C3S1, and C3S4 

 

 

 
            C3S2 and C3S3 

C2S2* 
Stabilized 

Base with FRCA 

A blend of 70% QB2 and 30% FRCA, 
stabilized with 3% Type I cement 

C2S3* 
Stabilized 

Base with FRAP 

A blend of 70% QB2 and 30% FRAP, 
stabilized with 10% Class C fly ash 

C2S4* Stabilized Base QB2 stabilized with 3% cement 

C3S1* Stabilized Base QB3 stabilized with 3% cement 

C3S2* Stabilized Subbase QB2 stabilized with 3% cement 

C3S3* Stabilized Subbase QB2 stabilized with 10% Class C fly ash 

C3S4 
Unbound 
Aggregate 

Base 

Conventional base course aggregate 
material; no chemical stabilization 

* Indicates test sections from which samples were extracted for wet-dry and freeze-thaw durability studies  

2.3 QUARRY BY-PRODUCT APPLICATIONS IN PAVEMENTS  

NCHRP synthesis 435 (volume 4) summarized the different uses of QB in pavement applications from 
a limited number of research projects and highway applications and evaluated usage of QB and 
mineral by-products, most of which focused on bound layer applications (Stroup-Gardiner & 
Wattenberg-Komas, 2013). The following QB applications were listed for bound pavement layers: (1) 
Portland cement substitution, (2) Portland cement concrete, (3) self-consolidating concrete, (4) hot-
mix asphalt, and (4) stabilized base materials. On the other hand, the unbound applications of QB 
were mostly limited to base and subbase applications. Other possible applications include QB usage 
in embankments as fill materials, chip seals, and flowable fills.  
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Based on laboratory testing results, some researchers have utilized chemical stabilization and 
accordingly recommended specific field applications for QB. According to Kalcheff and Machemehl 
(1980), the stabilization of QB with cement developed relatively high rigidity with a small amount of 
Portland cement compared with granular soil-cement stabilization. The use of low-cement content 
has the advantage of decreasing the shrinkage cracking. Kumar and Hudson (1992) examined the 
unconfined compressive strength, tensile modulus of elasticity, and Poisson’s ratio of cement-treated 
QB materials. They concluded that stabilizing QB with cement could produce the adequate 
compressive strength, modulus of elasticity, and tensile strength required for subbase materials. They 
proposed a base course material additive, flowable fill, under slab granular fill, and cement-stabilized 
subbase/base layers as possible pavement applications of QB. 

Researchers have also investigated the field usage of QB in a stabilized base layer. In a study in Lynn 
County, Iowa, the use of emulsion-stabilized limestone screening was investigated as a base material 
(Nelson et al., 1994). Several test sections with base thicknesses of 4 to 6 in. (100 to 150 mm) and 
asphalt-cement contents of 2.5%, 3.5%, and 4.5% were inspected. The 4-in. (100-mm) thick base did 
not produce a satisfactory low-cost maintenance roadway, based on periodic crack survey data and 
structural adequacy assessment using a Road Rater equipment. Thus, the researchers recommended 
a 6-in. (150-mm) thick emulsion-stabilized QB base with more than 3.5% asphalt-cement, topped with 
a 2 in. (50 mm) HMA surface, which could provide a low-maintenance roadway (Nelson et al., 1994). 

In a study in Arlington, Texas, the use of limestone QB was evaluated as a base material for sections 
of State Highway 360 (Puppala et al., 2008). A 36-in. (914-mm) thick layer of quarry fines stabilized 
with 2.3% cement was used as the base overlain by a 4-in. (102-mm) thick HMA and 8-in. (203-mm) 
thick Continuously Reinforced Concrete Pavement (CRCP) surface. Field monitoring using horizontal 
inclinometers showed that the sections experienced low permanent deformation during service. 
Additionally, the International Roughness Index (IRI) values were measured to be within 32–158 
in./mile (0.5–2.5 m/km) after 30 months of service, which is lower than the threshold value of 200 
in./mile (3.15 m/km), thus indicating good performance (Puppala et al., 2012). 

Stabilized QB mixes were also evaluated for applications such as flowable fills, soil modification, and 
Self-Consolidating Concrete (SCC). According to the results presented in the study by Wood and 
Marek (1995), using 3% cement, 8% fly ash, and 89% QB resulted in a flowable fill with adequate 
performance. Naik et al. (2005) examined the use of QB in SCC and reported that the addition of QB 
minimized the needed quantity of admixtures without reducing the strength of the SCC. Koganti and 
Chappidi (2012) reported that using up to 40% QB by weight proved to be beneficial in improving the 
strength of black cotton expansive soil. 

Recent laboratory studies have also investigated the use of QB (or quarry fines) for pavement 
applications. Abdullah et al. (2018) conducted workability tests, flexural strength tests, and 
compressive strength tests on concrete samples with 100% quarry fines used for sand replacement in 
concrete. The study concluded that concrete samples with 100% QB as fine aggregates produced 
more sustainable concrete samples with better durability, compressive strength, and furnishing 
properties. The same study reported that concrete samples with QB had higher water absorption and 
workability at lower water/cement ratios. Schankoski et al. (2017) evaluated the rheological 
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properties of fresh cement paste with QB (diabase or gneiss quarry rock powders). They concluded 
that cement pastes containing QB had lower yield stress and lower viscosity than samples with 
cement pastes only. 

2.4 DURABILITY OF QB IN PAVEMENT APPLICATIONS 

Despite the promising results for using chemically stabilized aggregate QB materials in subsurface 
pavement applications from laboratory and field evaluations, only a few studies were conducted to 
evaluate the durability aspects of QB under wet-dry and freeze-thaw conditions. Further, most of 
these studies focused on the durability of QB or quarry dust in concrete applications as a more 
sustainable replacement of natural sand or fine aggregates in concrete (Ilangovana et al., 2008; 
Galetakis & Soultana, 2016; Li et al., 2011). A study by Ilangovana et al. (2008) concluded that the 
durability of concrete specimens prepared with QB as a replacement of natural sand was 10% higher 
than that of the same concrete with natural sand. Galetakis and Soultana (2016) reported several 
studies on concrete that concluded the chemical durability of concrete with QB is higher than 
conventional concrete. Similar conclusions were reported by Li et al. (2011) for the freeze-thaw 
durability of concrete with limestone QB fines. Further, Amadi (2014) reported a significant 
enhancement in the wet-dry durability of subgrade soils modified with QB and cement kiln dust. 
Similarly, Onyejekwe and Ghataora (2015) reported that QB materials stabilized with cement and a 
polymeric additive benefited from improved wet-dry durability when evaluated by immersion tests.  

For the durability of QB as a base/subbase material, Eze-Uzomaka and Agbo (2010) investigated the 
use of cement-stabilized laterite with quarry fines used as an additive for base course applications. 
The study defined a durability failure as a loss in UCS exceeding 20% after durability testing. 
According to the study, only cement contents exceeding 8% could result in a loss of UCS not 
exceeding 20%, and all samples stabilized with lower cement contents failed to meet durability 
requirements. Gurbuz (2015) investigated the use of quarry fines to stabilize subgrade soils for 
subbase applications in pavements. The study concluded that subgrade soils stabilized with marble 
QB fines have satisfactory durability under freeze-thaw cycles. The samples prepared with marble QB 
fines exceeding 10% had a cumulative soil-cement loss of 5% or lower after 12 cycles of freeze-thaw 
testing. Zhang et al. (2019) concluded that stabilized quarry fines can have sufficient durability and 
strength requirements for use as structural layers in high-volume pavement applications, provided 
that they are well designed and sufficiently compacted to a proper relative density. 
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CHAPTER 3: SAMPLE PREPARATION AND TESTING 

3.1 INTRODUCTION 

This chapter presents information on the preparation, curing, and testing of samples for freeze-thaw 
and wet-dry durability and unconfined compressive strength characteristics. Three sets of samples 
were prepared as follows: (i) 28 remolded laboratory samples for freeze-thaw and wet-dry durability 
testing; (ii) 28 field specimens extracted from the base/subbase layers for the chemically stabilized 
QB sections in Cell 2 and Cell 3 (constructed for ICT-R27-168) for freeze-thaw and wet-dry durability 
testing; and (iii) 24 remolded laboratory samples for unconfined compressive strength testing. Details 
of the extraction and/or preparation of samples are presented in the following sections. Further, 
durability tests conducted at the Illinois DOT Central Bureau of Materials (CBM) with details on 
sample behavior and failure mode investigation during/after wet-dry and freeze-thaw durability 
testing are presented in this chapter. 

3.2 EXTRACTION AND PREPARATION OF FIELD SAMPLES 

Following trenching of the test sections in ICT-R27-168, it was realized that the chemically stabilized 
QB materials can be recovered in intact pieces that were large enough to extract laboratory samples 
for durability testing. Ideally, samples for freeze-thaw and wet-dry durability tests required by 
AASHTO T 136 and AASHTO T 135 standard test procedures, respectively, are cylindrical with 
dimensions conforming to the size of the standard Proctor mold. Earlier on in project ICT-R27-168, 
several attempts to extract intact cylindrical cores of the stabilized base/subbase layers from the 
wheel path by a conventional coring method were not successful as the materials eroded with the 
presence of water introduced by the coring process. In another attempt, a dry coring technique, using 
a specially designed dry coring bit, was employed to extract cylinders from the stabilized base and 
subbase layers. However, the lightly cemented layers eroded under the drilling action, producing fine 
fragments that clogged the coring bit, creating high friction and preventing the recovery of fully intact 
cores from the drill bit.  

Ultimately, large blocks/chunks of intact stabilized QB base/subbase sections were collected to 
prepare field samples in the laboratory by saw-cutting. The large blocks were extracted utilizing a 
mini excavator. Since the test sections were trenched for project ICT-R27-168, and trenches were 
exposed to environmental conditions that might have eroded or changed the composition of the 
exposed materials over time, the remaining HMA on top of the test sections was removed. All 
samples for durability testing were extracted from underneath the removed HMA to ensure the 
samples prepared for durability testing are representative to the constructed test sections. The 
extracted materials were stored for further handling and cutting. The procedure for extracting and 
storing the field materials is outlined in Figure 3.1.  
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Figure 3.1. Extraction of stabilized QB materials from the test sections constructed for ICT-R27-168. 

Following the extraction and storage of intact blocks of field samples, the samples were cut into 
cuboid prisms using a large saw-cutting equipment normally used for cutting hard rocks. A dry saw-
cutting procedure was adopted to ensure samples do not disintegrate due to the presence of water 
(or other liquids such as lubricating oil normally used with this equipment for cutting hard rocks). The 
samples were shaped into cuboids (prisms) with a square cross section having a 2.8 in. (71 mm) side 
length and a 4.6 in. (122 mm) height (i.e. L = W = 2.8 in. and H = 4.6 in.). Note that the actual cut sizes 
were slightly different than the nominal size. The size and shape of the prepared specimens was 
primarily governed by the size of the chunks recovered from the field, which controls the movement 
of the blade and its wobbling action depending on the weight of the chunk being cut. The final 
samples produced by saw-cutting are shown in Figure 3.2. Sample shape and geometry is presented 
in Figure 3.3, which also shows a size comparison to a standard Proctor sample size. Note that the 
samples extracted from sections with blends of quarry by-products and recycled coarse aggregates 
generally had a rougher surface finish than those with QB only. In particular, the samples extracted 
from C2S3 with QB, FRAP, and fly ash had the roughest (least uniformly cut) surface finishes. 
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Figure 3.2. Saw-cutting procedure for field samples (top) and the  
final saw-cut samples tested for durability (bottom). 

 

The as-received dry densities and the relative densities of all field-extracted samples are presented in 
Table 3.1. The dry densities were calculated based on the as-received density and as-received 
moisture content of each sample, which were measured at IDOT Central Bureau of Materials (CBM). 
Table 3.1 lists low relative densities of some of the extracted samples compared to the maximum dry 
densities determined from the laboratory compaction tests using the standard Proctor compactive 
effort. Specifically, samples extracted from C2S1 with cement-stabilized QB2/FRAP mixes, C2S3 with 
fly ash–stabilized QB2/FRAP mixes, C3S1 with cement-stabilized QB3, and C3S3 with fly ash–stabilized 
QB2 had the lowest field dry densities and relative densities. These low densities could result in 
rather poor wet-dry and freeze-thaw durability trends when compared to those of the same material 
combinations compacted at higher relative densities.  
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Table 3.1. Summary of Field Sample Dry and Relative Densities  

Sample 
Name 

Spec. 

Maximum 
Laboratory Dry 
Density (MDD) 

pcf (kN/m3) 

Wet-Dry Durability Samples Freeze-Thaw Durability Samples 

As Received 
Dry Density 
pcf (kN/m3) 

Relative Density 
(%) 

As Received 
Dry Density 
pcf (kN/m3) 

Relative 
Density (%) 

C2S1 
# A 

135.0 (21.2) 
118.1 (18.6) 87.5 117.9 (18.5) 87.4 

# B 115.2 (18.1) 84.7 121.4 (19.1) 89.9 

C2S2 
# A 

128.6 (20.2) 
119.0 (18.7) 86.9 116.8 (18.3) 90.8 

# B 124.2 (19.5) 90.0 127.2 (20.0) 99.0 

C2S3 
# A 

136.2 (21.4) 
111.8 (17.6) 80.4 113.8 (17.9) 83.5 

# B 115.0 (18.1) 82.2 114.0 (17.9) 83.7 

C2S4 
# A 

137.5 (21.6) 
131.8 (20.7) 93.5 131.4 (20.6) 95.6 

# B 132.4 (20.8) 93.3 132.2 (20.8) 96.1 

C3S1 
# A 

129.9 (20.4) 
111.9 (17.6) 78.2 108.4 (17.0) 83.5 

# B 111.1 (17.4) 77.1 108.5 (17.0) 83.5 

C3S2 
# A 

137.5 (21.6) 
131.1 (20.6) 90.4 132.2 (20.8) 96.1 

# B 133.4 (20.9) 91.3 127.5 (20.0) 92.7 

C3S3 
# A 

135.6 (21.3) 
122.3 (19.2) 83.2 124.1 (19.5) 91.5 

# B 124.3 (19.5) 84.0 123.5 (19.4) 91.1 

3.3 PREPARATION OF LABORATORY SAMPLES 

Seven sets of laboratory samples were molded and prepared in the laboratory for freeze-thaw and 
wet-dry durability testing. In total, 28 samples were molded with four samples molded for each 
material combination: two for wet-dry and two for freeze-thaw durability testing. The material 
combinations are summarized in Table 3.2 along with the Optimum Moisture Content (OMC) and 
Maximum Dry Density (MDD), data from standard Proctor testing, and the molded wet densities. The 
OMC and MDD were targeted for the preparation of laboratory samples. The full suite of moisture-
density data was presented elsewhere in the final report of project ICT-R27-168 (Qamhia et al., 2018). 
Note that these molded laboratory samples are replicates of the material combinations that were 
used to construct the field test sections. Only one set of laboratory samples was prepared for the 
C2S4 and C3S2 base and subbase applications, respectively, since the same material combinations 
were used for both applications. 

For C2S2, two sets of samples were prepared: one with the full gradation (C2S2_R) and the other with 
any FRCA material retained on the 3/4 in. (19 mm) sieve removed (C2S2_S). All samples were 
compacted in a standard Proctor mold (see Figure 3.3) with a 4 in. (102 mm) diameter and 4.6 in. 
(116 mm) height and were compacted at the standard Proctor compactive effort (energy). To 
preserve the shape of samples upon demolding, the standard Proctor mold was specially cut into a 
split mold, which was deemed necessary for keeping such non-cohesive weak samples intact for 
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curing and testing. The split mold setup for preparing the durability samples and one prepared 
sample with QB2 and cement are shown in Figure 3.4. 

 

Figure 3.3. Durability sample size and geometry: size of field-extracted samples (left) and the  
lab mold used for preparing laboratory samples (right). 

 

  

Figure 3.4. Preparation of molded laboratory samples using a split mold. 
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Table 3.2. Material Combinations of Laboratory-molded Samples 

Sample 
Name 

Sample Description/Quarry  
By-Product Durability Cylinders 

Optimum 
Moisture 

(%) 

Standard Dry 
Density  

pcf (kN/m3) 

Calculated 
Wet Density 
pcf (kN/m3) 

Calculated 
Wet Weight 

Lbs. (g) 

C2S1 
Blend of 70% QB2 & 30% FRAP; stabilized 
with 3% Type I cement 

8.0 135.0 (21.2) 145.8 (22.9) 4.86 (2206)  

C2S2-S 

Blend of 70% QB2 & 30% FRCA by weight; 
stabilized with 3% Type I cement. Plus ¾ 
in. FRCA material not included in 
specimen (stripped) 

9.8 128.6 (20.2) 141.2 (22.2) 4.71 (2136)  

C2S2-R 

Blend of 70% QB2 & 30% FRCA by weight; 
stabilized with 3% Type I cement. Plus ¾ 
in. FRCA material included in specimen 
(retained) 

9.4* 130.1* (20.4) 142.3 (22.4) 4.75 (2153)  

C2S3 
Blend of 70% QB2 & 30% FRAP by weight; 
stabilized with 10% Class C fly ash 

7.5 136.2 (21.4) 146.4 (23.0) 4.88 (2215)  

C2S4 Blend of QB2 and 3% Type I cement 9.1 137.5 (21.6) 150.0 (21.6) 5.00 (2269)  

C3S1 Blend of QB3 and 3% Type I cement 8.4 129.9 (20.4) 140.8 (22.1) 4.70 (2130)  

C3S3 Blend of QB2 and 10% Class C fly ash 8.0 135.6 (21.3) 146.4 (23.0) 4.89 (2216)  

* Moisture-density relationship for C2S2-R was performed on minus 3/4 in. (19 mm) material per specifications. Standard dry 
density and optimum moisture values were 128.6 pcf (20.2 kN/m3) at 9.8% moisture content. The values shown in the above table 
reflect coarse particle adjustment for 5.5% oversize particles (+ 3/4 in. or 19 mm). 

3.4 CURING OF SAMPLES 

Curing of samples was achieved by letting the laboratory-prepared samples stand in a moist room at 
~100% relative humidity and room temperature of 70 ± 3°F (21 ± 2°C) for seven days. All samples 
were cured unsealed. Note that only the samples prepared in the laboratory for durability and 
Unconfined Compressive Strength (UCS) testing were cured in the moist room. The samples extracted 
from the field test sections were not further cured since they were constructed about three years 
prior to durability testing and were, since then, exposed to varying environmental conditions and 
possibly several wet-dry and freeze-thaw cycles. Figure 3.5 shows the curing of the 28 laboratory-
molded durability samples for wet-dry and freeze-thaw durability testing in a moist room. Similarly, 
all prepared UCS samples were cured in a similar manner. The preparation, curing, and testing of UCS 
samples will be detailed later in this chapter. 
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Figure 3.5. Moist room curing of the laboratory-molded samples for  
freeze-thaw and wet-dry durability testing. 

3.5 TESTING OF WET-DRY DURABILITY SAMPLES 

Testing of wet-dry durability samples was conducted according to the specifications and 
requirements of AASHTO T 135 standard “Standard Method of Test for Wetting-and-Drying Test of 
Compacted Soil-Cement Mixtures.” After each cycle of wetting and drying, measurements of 
moisture change, volume change, and soil-cement loss by a brushing method were taken. Note that 
method “A” specifies that 100% of the sample passes the #4 sieve (4.75 mm), which does not apply to 
all the tested samples. The standard method “B” in the AASHTO T 135 specification was employed to 
test the wet-dry specimens, which was deemed necessary since many of the samples had recycled 
coarse FRAP and FRCA large-sized materials. The testing procedure involved wetting of the seven-day 
cured samples for five hours in potable water at a room temperature of 70 ± 3°F (21 ± 2°C), followed 
by oven-drying for 42 hours at a temperature of 160 ± 5°F (71 ± 3°C). Weight was recorded after 
each step. Samples were then tested for wet-dry durability by brushing all areas with two firm strokes 
using a wire scratch brush and applying a brushing force corresponding to approximately 3 lbf (13 N). 
The wetting and drying steps were repeated for a total of 12 cycles for each tested specimen, with 
weight and cement loss measurements taken after each testing cycle. 

In total, 14 laboratory-molded samples and 14 field-extracted samples were tested. These samples 
entail the seven material combinations for lab and field samples, with two replicates tested for each 
combination (referred to by replicates “A” and “B”). All wet-dry durability testing was conducted at 
IDOT CBM after molding and curing or extraction and saw-cutting at the University of Illinois. The 
laboratory-molded samples were tested first, followed by the field-extracted samples. 

For the testing of the laboratory-molded samples, the original molded wet weight and molded 
moisture content were not fully tracked during the molding process. Since these two values are key 
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components in the calculation of soil-cement loss, and since all laboratory samples were compacted 
at the MDD and OMC, the specimen wet weights were back-calculated using the MDD and OMC 
values and then used for the calculation of the soil-cement loss. Note that for the purposes of this 
report, soil-cement loss is referred to soil-modifier loss in samples stabilized with cement or fly ash as 
the chemical modifier. The starting wet weight of a specimen is commonly lower than its molded wet 
weight due to material loss during extrusion and handling and water evaporation. Each specimen’s 
weight was recorded prior to the start of durability testing at IDOT CBM. In most cases, these weights 
were slightly lower than the back-calculated wet weights. In one instance (C3S1), the “as-received” 
wet weight was greater than the back-calculated value and was thus assumed to be the molded wet 
weight. 

Similarly, for the field-extracted samples, some assumptions needed to be made for estimating the 
moisture content at compaction and the “as-received” moisture contents. In order to calculate the 
“as-received” dry mass/density of each block sample, the initial moisture content needed to be 
calculated. The as-received moisture content was derived from the initial oven-drying period of the 
wet-dry durability. This value was adjusted upward to account for the water of hydration for all 
specimens stabilized with 3% cement. No water of hydration adjustment was applied to samples 
stabilized with 10% fly ash. For density calculations, the block specimen dimensions were measured, 
and the mass of the block was recorded. The dry mass/density was calculated by adjusting for the 
measured as-received moisture content, and the wet mass/density for each specimen was calculated 
by assuming that the specimens were compacted at a moisture content like the OMC. Note that the 
calculated dry densities were significantly lower than the MDD for some of the field test sections (e.g. 
C3S1 with cement-stabilized QB2). The dry densities and relative densities of the field-extracted 
samples are presented in Table 3.1. 

For the determination of the percentage of soil-cement loss of the field and laboratory samples, the 
corrected oven-dry weight of the samples needed to be calculated. The correction assumed the water 
of hydration was equal to 1/4 of the percent cement in the specimen for the cement-stabilized 
samples, and zero for the fly ash stabilized ones. Accordingly, the soil-cement loss (%) was calculated 
using the following formula from the Portland Cement Association (PCA): 

   𝑆𝑜𝑖𝑙 𝐶𝑒𝑚𝑒𝑛𝑡 𝑙𝑜𝑠𝑠 (%) =
𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡−𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑜𝑣𝑒𝑛 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 

𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡
 𝑥 100%                   (3.1) 

Note that the calculation of the percentage of soil-cement loss is intended after the completion of 12 
cycles of wet-dry durability. The soil-cement loss, however, can be estimated after the completion of 
any cycle of durability provided that the specimen remains intact and the moisture content can be 
reasonably estimated. Further, the final corrected moisture content was computed for each 
specimen from the final recorded brushed weight and the corresponding corrected oven-dry weight. 
This includes the water of hydration when cement is used for chemical stabilization. 

For the standard testing procedure of wet-dry durability with AASHTO T 135, the standard specifies 
that each Proctor-sized sample is brushed with eighteen to twenty vertical firm brush strokes using a 
wire scratch brush, such that each area of the sample along the longitudinal axis is brushed with two 
firm strokes. An additional four strokes are required on each end of the cylindrical specimen. This 



20 

procedure was followed closely for all laboratory-molded specimens. For the field specimen, on the 
other hand, and given the sample geometry and the size of the wire brush, each face of the block 
sample was brushed with four strokes, which ensured that all areas are brushed with two firm 
strokes, thus meeting the requirements of the AASHTO T 135 standard. Selected steps of wet-dry 
durability test illustrating the procedure and the sample conditions at certain cycles indicated are 
presented in Figure 3.6. 

   
Wetting of lab samples Oven-drying of lab samples Brushing of lab samples 

 
Cycle 1 

 
Cycle 7 

 
Cycle 12 

Testing of laboratory-molded samples for wet-dry durability 

  
Testing of field-extracted samples for wet-dry durability 

Figure 3.6. Testing of lab and field samples for wet-dry durability at IDOT CBM.  
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3.6 TESTING OF FREEZE-THAW DURABILITY SAMPLES 

Testing of freeze-thaw durability samples was conducted according to the specifications and 
requirements of the AASHTO T 136 standard “Standard Method of Test for Freezing-and-Thawing 
Tests of Compacted Soil-Cement Mixtures.” Like AASHTO T 135 for wet-dry durability, this standard 
involves using a brushing method to determine the percentage of soil-cement loss, moisture changes, 
and volume changes produced after each cycle of freezing and thawing. The standard method “B” 
was also used. The testing procedure involves the placement of seven-day cured samples in a freezing 
cabinet in air for 24 hours at a temperature of -10°F (-23°C), followed by thawing in a moist room for 
23 hours at 100% relative humidity and a temperature of 73.5 ± 3.5°F (23 ± 2°C). The standard 
procedure recommends that samples are padded with absorptive materials at the freezing and 
thawing stage to permit water absorption by capillary action. The sample weights were recorded 
after each step, and the samples were brushed and tested in the exact same manner as the wet-dry 
samples, as outlined above. After 12 cycles of testing were completed, the samples were dried to a 
constant weight at a temperature of 230 ± 0°F (110 ± 5°C).  

In total, 14 laboratory-molded samples and 14 field-extracted samples were tested for freeze-thaw 
durability. Two replicates were tested for each material combination (referred to by replicates “A” 
and “B”). All freeze-thaw durability testing was conducted at IDOT CBM after preparation (and curing) 
at the University of Illinois. For the testing of both laboratory-molded samples and field-extracted 
samples, the same assumptions and calculations that were undertaken for the wet-dry samples also 
apply for the freeze-thaw samples for the purpose of estimating the initial/molded moisture content 
and the starting wet weight prior to durability testing. The number of brushing strokes for the field-
extracted samples and the laboratory-molded samples was also the same as the wet-dry durability 
testing. Further, the calculations for the soil-cement loss are like those reported above for wet-dry 
testing. The same assumptions and corrections for the water of hydration for the stabilizing agents 
were used. Selected steps of freeze-thaw durability testing illustrating the procedure and the sample 
conditions at certain test cycles indicated are presented in Figure 3.8. 

One issue with the testing of freeze-thaw samples was that the calculation of the soil-cement loss is 
accurate for specimens that remain reasonably intact and is intended to be computed after the 
completion of 12 cycles of freezing and thawing as per AASHTO T 136. Errors are introduced into the 
soil-cement loss calculations for specimens that experience excessive deterioration and/or 
unaccountable material loss during testing. For samples that did not complete 12 cycles of testing 
because of excessive sample deterioration, an estimate of soil-cement loss after 12 cycles was 
accomplished by extrapolating the data from the twelfth cycle by curve fitting the data with a second- 
or third-order polynomial. The order of the polynomial was chosen such that the experimental data is 
most accurately fit. For these specimens, the final moisture content was estimated and was derived 
from both replicates when possible and from specimens with a similar blend of materials. This 
includes the water of hydration when cement was used as the chemical stabilizer. The results of the 
freeze-thaw durability testing, including details for samples that did not complete 12 cycles of testing, 
will be presented in Chapter 4. 
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Freezing of laboratory samples Thawing of laboratory samples (moist room) 

   
Cycle 1 Cycle 7 Cycle 12 

Testing of laboratory-molded samples for freeze-thaw durability 

  
Testing of field-extracted samples for freeze-thaw durability 

Figure 3.7. Testing of laboratory and field samples for freeze-thaw durability at IDOT CBM. 

3.7 TESTING OF UNCONFINED COMPRESSIVE STRENGTH SAMPLES 

In addition to preparing samples for durability testing, samples were also prepared to test for the 
seven-day Unconfined Compressive Strength (UCS). The samples were compacted in a 4 in. (102 mm) 
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diameter and 8 in. (203 mm) tall cylindrical mold in four lifts. The compaction method utilized was as 
per the recommendations of ASTM C1435/ C1435M “Standard Practice for Molding Roller-
Compacted Concrete in Cylinder Molds Using a Vibrating Hammer.” Four cylinders were prepared for 
each of the six material combinations investigated in the field study (i.e. C2S1–C2S4, C3S1, and C3S3). 
Note that for the seventh test section (C3S2) the material combination in the subbase was essentially 
the same as that in the base layer of section C2S4. All samples were compacted at the optimum 
moisture contents determined from standard Proctor tests. Note that C2S4 and C3S2 studying base 
and subbase applications of cement-stabilized QB2 material, respectively, essentially have the same 
material compositions; so, only one set of samples was prepared for both sections. All samples were 
cured for seven days in a moist room at a room temperature and a relative humidity of ~100%. Prior 
to testing the samples for UCS, the cylindrical samples were capped at both ends using a sulfur-based 
capping material. Moisture-cured samples were tested for their seven-day UCS following the 
procedure outlined in the ASTM 1633 “Standard Test Methods for Compressive Strength of Molded 
Soil-Cement Cylinders.” A loading rate of 3,500–5,500 lb./minute (15.6–24.5 kN/minute) was used for 
UCS testing. Figure 3.8 illustrates some of the steps involved in the preparation, curing, capping, and 
testing of the UCS samples.  

  
Preparation of UCS samples Curing of UCS samples 

  
Capping of UCS samples Testing of UCS samples 

Figure 3.8. Preparation, curing, and testing of unconfined compressive strength samples. 
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CHAPTER 4: RESULTS AND INTERPRETATIONS 

4.1 INTRODUCTION 

This chapter presents the results for wet-dry and freeze-thaw durability for samples molded in the 
laboratory and samples extracted from the field test sections studying sustainable QB applications. 
Details for sample preparation and testing, along with any assumptions, were discussed in detail in 
the previous chapter. First, the results and interpretations for the wet-dry durability testing are given, 
followed by the results and interpretations for freeze-thaw durability and unconfined compressive 
strength (UCS) testing. The effect of curing duration, type of stabilizer (cement vs. fly ash), and the 
chemical composition of the QB materials on the results of durability testing are discussed. The 
validity of assumptions and their effect on the final durability results are also discussed in this 
chapter. Finally, the results for UCS are compared with previous results for samples tested right 
before the construction of the field test sections in 2016 to capture any effects of material variability, 
particularly cement and Class C fly ash composition, on the durability results. 

4.2 RESULTS FOR WET-DRY DURABILITY 

Table 4.1 and Figure 4.1 summarize the results of the wet-dry durability testing for the laboratory-
prepared specimens. Detailed information about the test results of each sample is given in Table 4.3 
in the notes section. All laboratory samples survived the 12 cycles of wet-dry durability testing. IDOT 
Standard Specifications for Road and Bridge Construction specifies that the loss in weight/mass shall 
be less than 10% after 12 cycles of wetting and drying (IDOT, 2016). For the laboratory samples, the 
only sample to exceed 10% soil-cement loss after 12 cycles of testing was C2S2-S #A lab samples. All 
laboratory-molded samples had similar soil-cement losses after 12 cycles of wet-dry testing, which 
ranged between 3.5–10%. On average, C3S1 with cement-stabilized QB3 had the lowest soil-cement 
loss (3.58%), while C2S4 with cement-stabilized QB2 had the highest soil-cement loss (9.83%). It can 
be concluded that the chemical composition of QB3 provided an advantage for wet-dry durability in 
the short term. The effect of chemical composition on durability is discussed in detail later in this 
chapter. 

The full suite of wet-dry durability data for lab samples are presented in Appendix A, which also 
provides measurements of the final corrected moisture content of the samples after 12 cycles of 
testing. The final moisture content was corrected to account for the water of hydration of cement for 
all samples stabilized with cement. No correction was applied to fly ash–stabilized specimens due to 
lack of knowledge and literature on the water of hydration for fly ash. Note that the corrected final 
moisture content was provided in the appendices for each of the 56 tested wet-dry and freeze-thaw 
durability samples. 
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Table 4.1. Summary of Test Results for Wet-Dry Durability of Laboratory-molded Samples 

Sample 
Name 

Specimen 

As Received 

Weight 

Lbs. (g) 

No. of Cycles 

Completed 

Wet-Dry Soil-
Cement Loss (%) 

Average  

Wet-Dry Soil-Cement 
Loss (%) 

C2S1 
# A 4.81 (2181) 12 6.75% 

6.02% 
# B 4.87 (2208) 12 5.28% 

C2S2-S+ 
# A 4.60 (2087) 12 12.03% 

9.58% 
# B 4.72 (2141) 12 7.13% 

C2S2-R+ 
# A 4.72 (2143) 12 7.52% 

7.68% 
# B 4.74 (2151) 12 7.83% 

C2S3 
# A 4.86 (2206) 12 7.09% 

7.24% 
# B 4.85 (2202) 12 7.38% 

C2S4 
# A 4.79 (2173) 12 9.66% 

9.83% 
# B 4.76 (2159) 12 10.00% 

C3S1 
# A 4.78 (2170) 12 3.45% 

3.58% 
# B 4.81 (2184) 12 3.72% 

C3S3 
# A 4.86 (2204) 12 5.60% 

5.40% 
# B 4.87 (2207) 12 5.21% 

+ For C2S2, ‘S’ indicates stripped samples were FRCA particles larger than 3/4 in. (19 mm) were removed; ‘R’ indicates regular gradation, i.e. 
using the as-received material gradation for the FRCA material 

Note: No unusual behavior was observed for any of the tested samples 

 

 

Figure 4.1. Estimated soil-cement loss for wet-dry durability testing of lab-molded samples. 
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Table 4.2 and Figure 4.2 summarize the results of the wet-dry durability testing for the field-extracted 
specimens. All samples extracted from the field test sections survived the 12 cycles of wet-dry 
durability testing. Samples with cement-stabilized QB2 or QB2 blended with FRAP/FRCA had 
significantly low soil-cement loss and slow rates of deterioration. All samples with QB2, namely C2S1, 
C2S2, C2S4, and C3S2, had less than 2% soil-cement loss after 12 cycles of wet-dry durability. On the 
other hand, C3S1 with cement-stabilized QB2 had, on average, significantly higher soil-cement loss 
when compared to samples with cement-stabilized QB2, i.e. C2S4 and C3S2. This is an indication that 
mineralogy and chemical composition of QB can affect wet-dry durability. Also, note that samples 
extracted from C3S1 had low relative densities compared to other cement-stabilized samples. The 
relative densities were reported in Table 3.1 for all field samples. Nevertheless, all cement-stabilized 
QB materials or QB blends with FRAP/FRCA pass the IDOT requirement of accumulating less than 10% 
soil-cement loss after 10 cycles of wetting and drying. 

On the other hand, C2S3 and C3S3 samples with fly ash–stabilized QB2/FRAP and fly ash–stabilized 
QB2, respectively, had significantly higher soil-cement losses and rates of deterioration. Cement 
proves to be superior to Class C fly ash for long-term durability. Field samples with fly ash had a 
relatively high soil-cement loss ranging between 17.7% and 19.4%, which is significantly higher than 
what is permitted by IDOT and what was calculated for laboratory-molded samples stabilized with fly 
ash. Also note that the fly ash samples extracted from the field had low relative density when 
compared with most of the cement-stabilized QB samples (see Table 3.1). 

Table 4.2. Summary of Test Results for Wet-Dry Durability of Field-extracted Samples 

Sample 
Name 

Spec. 

As Received 

Weight 

Lbs. (g) 

As Received 

Density 

pcf (kN/m3) 

As 
Received 

Moisture 

(%) 

No. of 
Cycles 

Completed 

Wet-Dry 
Soil-

Cement 
Loss (%) 

Average 

Wet-Dry 
Soil-

Cement 
Loss (%) 

C2S1 
# A 3.07 (1393) 120.3 (18.9) 1.84 12 1.51 

1.51 
# B 3.12 (1415) 118.5 (18.6) 2.91 12 1.51 

C2S2 
# A 3.02 (1369) 121.6 (19.1) 2.16 12 1.34 

1.02 
# B 3.17 (1437) 126.9 (19.9) 2.16 12 0.69 

C2S3 
# A 3.16 (1432) 112.4 (17.7) 0.56 12 19.09 

17.58 
# B 2.96 (1342) 115.8 (18.2) 0.68 12 16.07 

C2S4 
# A 3.16 (1433) 133.5 (21.0) 1.31 12 0.48 

0.46 
# B 3.08 (1398) 134.6 (21.1) 1.62 12 0.44 

C3S1 
# A 2.81 (1274) 113.6 (17.9) 1.54 12 4.30 

4.50 
# B 2.72 (1236) 112.8 (17.7) 1.57 12 4.69 

C3S2 
# A 3.44 (1562) 133.5 (21.0) 1.85 12 1.45 

1.54 
# B 3.24 (1469) 136.2 (21.4) 2.13 12 1.63 

C3S3 
# A 3.01 (1365) 123.0 (19.3) 0.59 12 19.43 

18.55 
# B 3.21 (1455) 125.0 (19.6) 0.55 12 17.67 

Note: No unusual behavior was observed for any of the tested samples. 
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Figure 4.2. Estimated soil-cement loss for wet-dry durability testing of field-extracted samples. 

The field test sections for project ICT-R27-168, which studied sustainable field applications of QB, 
were constructed in the summer of 2016. This means that samples for durability testing, which were 
extracted in the spring of 2019, were exposed to several cycles of wetting and drying / freezing and 
thawing in the field prior to the 12 cycles of wet-dry durability testing. This fact might explain the 
variability in the results of wet-dry durability between the lab and field samples, where the 
laboratory-molded samples showed superior performance relative to the field sample. The exposure 
of fly ash–stabilized samples to harsh environmental conditions over three years contributed to the 
poor performance of the field samples. The opposite trend was observed for the cement-stabilized 
samples, where the field samples mostly showed better performance when compared to the 
laboratory-molded samples. In the case of cement-stabilized QB samples, the long-term strength gain 
might have possibly outweighed the detrimental effects of having the field test sections exposed to 
harsh environmental conditions for around three years. 

Another explanation for the significant variability in performance of the fly ash–stabilized materials 
between the laboratory and field samples is the composition of the fly ash. The fly ash used in the 
preparation of the laboratory-molded samples was obtained from the same source (vendor) as the 
one used in the construction of the field test sections. However, being a by-product material of coal 
combustion, the properties and composition of the Class C fly ash can vary greatly from batch to 
batch. More investigation on the differences in the chemical composition of the fly ash material used 
to prepare both sets of samples might be needed. The results of UCS testing presented later in this 
chapter were used to partly investigate the cementitious properties of the fly ash used to prepare 
both sets of samples. Note that fly ash is known to have a short shelf life (Tutumluer et al., 2015), 
and, thus, a fresh batch of Class C fly ash was obtained to prepare the laboratory samples for 
durability testing to ensure proper cementitious properties. 
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4.3 RESULTS FOR FREEZE-THAW DURABILITY 

Table 4.3 and Figure 4.3 summarize the results of the freeze-thaw durability testing for the 
laboratory-prepared specimens. Detailed information about the performance of each sample is given 
in Table 4.3 along with the number of cycles completed before the sample fell apart (for the samples 
that did not complete 12 cycles of freeze-thaw testing). Note that the freeze-thaw soil-cement loss 
for each specimen and the average soil-cement loss given in Table 4.3 represent soil-cement losses 
after 12 cycles of testing. For those samples that deteriorated/fell apart before completing 12 cycles 
of testing, these reported values were obtained by extrapolating the data from 12 cycles by fitting the 
data with the best-fit polynomial. Both samples for C2S1, C2S2_R, and C2S3 with cement-stabilized 
QB2/FRAP, cement-stabilized QB2/FRCA, and fly ash–stabilized QB2/FRAP, respectively, did not 
complete 12 cycles of testing, mainly due to layer separation.  

C2S1 and C2S2_R materials were used to construct the two field test sections that had superior 
performance trends and low levels of surface rut accumulation in the accelerated pavement study for 
project ICT-R27-168 (Qamhia et al., 2018; Qamhia et al., 2019). As observed in Table 4.3 and Figure 
4.3, the seven days of curing was not sufficient to achieve enough bonding and cementation between 
the coarse aggregates and the QB materials, which led to rapid deterioration and layer separation 
upon brushing. Note that freeze-thaw testing is a harsher test when compared to the wet-dry 
durability testing. It is generally observed that all laboratory-molded samples had significantly higher 
soil-cement loss in freeze-thaw durability testing when compared to wet-dry testing and that all 
samples exceeded the 10% soil-cement loss specified by IDOT for durability testing.  

Also note that for some sample sets (e.g. C2S3 and C2S4), one sample was eliminated from the 
average soil-cement loss reported for these materials due to variable performance between the two 
samples and the observations of sample performance upon testing at IDOT CBM. The eliminated 
samples were not graphed in Figure 4.3, but the full suite of data, including any extrapolation, are 
presented in Appendix B. Finally, QB2 samples stabilized with Class C fly ash, namely C2S3 and C3S3, 
had significantly lower soil-cement loss and lower rate of deterioration when compared to cement-
stabilized samples. This can indicate higher freeze-thaw durability of fly ash–stabilized samples at 
early stages after seven days of curing. 

On the other hand, different trends for freeze-thaw durability can be seen for the long-term cured 
samples extracted from the field test sections, which are given in Figure 4.4 and Table 4.4. All 
cement-stabilized samples with QB2 or QB2 blended with coarse-recycled aggregates (FRAP or FRCA) 
survived 12 cycles of testing and accumulated significantly lower soil-cement losses than the QB2 
samples stabilized with fly ash and the cement-stabilized QB3 samples. Note that specimen A for 
C2S2 with cement-stabilized QB2 and FRCA was eliminated from the average soil-cement loss since it 
had a low dry density (relative dry density of specimen A was 90.8% while that of specimen B was 
99.0%). Similarly, sample C3S1 with cement-stabilized QB3 materials extracted from the field test 
sections had significantly low densities compared to other samples and compared to the MDD value 
obtained from laboratory Proctor tests. This low density, in addition to the chemical composition of 
the QB3 material, which had less magnesium oxide content than QB2 material, may explain the poor 
long-term performance of C3S1. Further investigations on the effects of density and chemical 
composition on the durability of QB mixes are needed for a better understanding of the performance 
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trends. The freeze-thaw durability results for the field-extracted samples indicate that the type of 
stabilizer and the chemical composition of the QB material, which constitute 70%–100% of the 
aggregate materials in the sample, have significant effects on the durability of QB applications, 
particularly when long-term durability is considered. The full suite of data is presented in Appendix B.  

Table 4.3. Summary of Test Results for Freeze-Thaw Durability of Laboratory-molded Samples 

Sample 
Name 

Specimen 
As Received 

Weight  
Lbs. (g) 

No. of 
Cycles 

Completed 

Freeze-
Thaw Soil-

Cement 
Loss (%) 

Average 
Soil-

Cement 
Loss (%) 

Notes 

C2S1 

# A 4.96 (2252) 8 62%* 

66.5% 

Rapid deterioration—cycle #5. Layer 
separation—cycle #6.  
Done after cycle #8 

# B 4.85 (2199) 9 71%* 
Rapid deterioration—cycle #5. Done 
after cycle #9 

C2S2-S 

# A 4.65 (2111) 11 28%* 

22.8% 

Rapid deterioration—cycle #8.  
Falls apart during cycle #12 

# B 4.70 (2133) 12 17.58% Rapid deterioration—cycle #10 

C2S2-R 

# A 4.74 (2149) 6 78%* 

79.0% 

Rapid deterioration—cycle #4. Layer 
separated & fell apart after cycle #6 

# B 4.70 (2130) 8 80%* 
Rapid deterioration—cycle #4.  
Falls apart after cycle #8 

C2S3 

# A 4.94 (2240) 10 90%* 
Use 

13%** 

Layer separation—cycle #6.  
Rapid deterioration—cycle #6.  
Falls apart—cycle #10 

# B 4.92 (2233) 10 13%* 
Rapid deterioration—cycle #8. Layers 
separated & fell apart during cycle 
#11 

C2S4 

# A 4.80 (2175) 12 41.25% 
Use 

41.2%*** 

Rapid deterioration—cycle #8  

# B 4.74 (2151) 6 65%* 
Rapid deterioration—cycle #5. Layers 
separated & fell apart after cycle #6 

C3S1 

# A 4.68 (2123) 12 58.22% 

50.13% 

Rapid deterioration—cycle #6 

# B 4.71 (2138) 12 42.04% Rapid deterioration—cycle #8 

C3S3 

# A 4.81 (2180) 12 13.55 

12.86% 

Rapid deterioration—cycle #10 

# B 4.77 (2163) 12 12.18 Rapid deterioration—cycle #10 

* Estimated soil-cement loss extrapolated from 12 cycles. 
** Use 13% loss as an average estimate from specimen B (C2S3 blend). Has similar percentage of loss as fly ash blend in 
C3S3. Specimen A should be disregarded as it quickly deteriorated when layers began to separate. 
*** Use 41.2% loss as an average from specimen A C2S4 blend. Specimen A completed 12 cycles. 
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Figure 4.3. Estimated soil-cement loss for freeze-thaw durability testing of lab-molded samples. 

 

 

Figure 4.4. Estimated soil-cement loss for freeze-thaw durability testing of field-extracted samples. 
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Table 4.4. Summary of Test Results for Freeze-Thaw Durability of Field-extracted Samples 

Sample 
Name 

Spec. 

As 
Received 
Weight 
Lbs. (g) 

As- 
Received 
Density 

pcf 
(kN/m3) 

As 
Received 
Moisture 

(%)*** 

No. of 
Cycles 

Completed 

Freeze-
Thaw Soil-

Cement 
Loss (%) 

Avg. 
Soil-

Cement 
Loss (%) 

Notes 

C2S1 

# A 
2.9 

(1337) 
120.1 
(18.9) 

1.84 12 23.12 

19.76 

 

# B 
3.0 

(1369) 
123.6 
(19.4) 

1.84 12 16.40  

C2S2 

# A 
3.1 

(1400) 
119.3 
(18.7) 

2.16 12 33.26 
Use 

3.57** 

 

# B 
3.2 

(1444) 
130.0 
(20.4) 

2.16 12 3.57  

C2S3 

# A 
2.9 

(1323) 
114.5 
(18.0) 

0.62 3 
100 / 10 

cycles 

100 

Rapid deterioration 
cycle 2. Large crack 
cycle 3. Falls apart 
cycle 4 

# B 
2.9 

(1303) 
114.7 
(18.0) 

0.62 3 
100 / 8 
cycles 

Rapid deterioration 
cycle 2. Lay on side—
cycle 3. Falls apart 
cycle 4 

C2S4 

# A 
2.9 

(1333) 
133.3 
(20,9) 

1.46 12 13.01 

12.70 

 

# B 
3.1 

(1409) 
134.1 
(21.1) 

1.46 12 12.38  

C3S1 

# A 
2.7 

(1205) 
110.1 
(17.3) 

1.55 7 
100 / 9 
cycles 

100 

Rapid deterioration 
cycle 3. Lay on side—
cycle 6. Falls apart 
cycle 8 

# B 
2.8 

(1291) 
110.2 
(17.3) 

1.55 8 
100 / 10 

cycles 

Rapid deterioration 
cycle 3. Lay on side—
cycle 6. Falls apart 
cycle 9 

C3S2 

# A 
3.3 

(1502) 
134.8 
(21.2) 

1.99 12 5.32 

7.13 

 

# B 
3.3 

(1487) 
130.0 
(20.4) 

1.99 12 8.94  

C3S3 

# A 
3.0 

(1362) 
124.8 
(19.6) 

0.57 10 70* 

72 

Large loss after cycle 
4. Lay on side—cycle 
9. Terminate after 
cycle 10 

# B 
3.0 

(1345) 
124.2 
(19.5) 

0.57 10 73* 
Large loss after cycle 
4. Terminate after 
cycle 10 

* Estimated soil-cement loss extrapolated from 12 cycles. 
** Use 3.57% loss as an average estimate from specimen B of C2S2 blend. Specimen A has low dry density.  
*** As-received moisture taken as average from corresponding wet-dry specimens. 
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4.4 RESULTS FOR UNCONFINED COMPRESSIVE STRENGTH 

Unconfined Compressive Strength (UCS) tests were carried out at ICT concurrently with durability 
testing. Both tests were conducted to ascertain that both durability and strength requirements were 
investigated for QB pavement applications and checked against IDOT requirements and 
specifications. In addition, UCS tests helped to evaluate effects of possible material variability 
between the newly molded laboratory samples and the materials that were previously used to 
construct the test sections for project ICT-R27-168. Note that the same aggregate materials (QB2, 
QB3, FRAP, and FRCA) were used for the field and laboratory samples, while the cement and fly ash 
were newly obtained for the laboratory-molded samples to ensure adequate cementing properties 
and shelf life. Thus, UCS samples might indicate differences in strength properties between the field 
and lab samples particularly due to the different sources and compositions of cement and Class C fly 
ash stabilizers. Accordingly, the newly obtained UCS results could be different from the previous 
results although the same stabilizer type and amount were used for the majority of the material 
compositions. 

Figure 4.5 shows the UCS test results for all material combinations evaluated in the field test sections. 
In addition, laboratory UCS results conducted prior to the construction of the field test sections in 
2016 are also presented in Figure 4.5. The error bars represent one standard deviation from the 
mean UCS. Based on the mean UCS and standard deviation values, there are no statistical differences 
in the UCS between the current results and the previous results in ICT-R27-168 for all QB applications 
except for the C3S3 section having fly ash–stabilized QB2 materials. For C3S3, the newly tested 
samples have statistically higher UCS, which is on average ~100 psi (690 kPa) higher than the UCS 
values of the previously tested samples before the construction of the APT test sections (project ICT-
R27-168). This higher strength could have possibly contributed to the better performance trends seen 
during the durability testing of the fly ash–stabilized laboratory samples when compared to those 
extracted from the field test sections. Results of cement-stabilized test sections indicate that the 
better durability performance of the field samples can be partially attributed to the long-term 
strength gain and the cementitious effects of the dolomitic fines, particularly for sections with QB2 
materials, which needs to be further investigated by considering a larger dataset by testing materials 
obtained from additional QB sources. 

Note that the average seven-day UCS of all tested samples in the current study ranged between 310 
and 430 psi (2,137–2,965 kPa). The IDOT Standard Specifications for Road and Bridge Construction 
specifies a minimum seven-day compressive strength of 500 psi (3,447 kPa) for chemically treated 
subsurface materials (IDOT, 2016). However, based on the results of testing cube samples extracted 
from ICT-R27-168 field test sections, all samples with QB2 or QB2 blended with recycled coarse 
aggregates and stabilized with cement (i.e. C2S1, C2S2, C2S4, and C3S2) had an average UCS 
exceeding 600 psi (4137 kPa), which ultimately indicates that they are suitable as base/subbase 
course materials. The results of field cube UCS are shown in Figure 4.6. These results were also 
presented in the final report of ICT-R27-168 (Qamhia et al., 2018). Note that both fly ash–stabilized 
test sections, i.e. C2S3 and C3S3, and the cement-stabilized QB3 material, i.e. C3S1, had significantly 
lower cube strengths. It is generally agreed that concrete cube strengths are 18–30% higher than 
cylinders having a 2:1 aspect ratio of height to diameter (Townsend et al., 1977; Kumavat and Patel, 
2014; Qamhia et al., 2018).  
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Figure 4.5. Unconfined compressive strength results of the investigated QB applications. 

 

 

Figure 4.6. Unconfined compressive strength results of cube samples extracted from  
ICT-R27-168 field test sections (Qamhia et al., 2018). 
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4.5 INTERPRETATIONS OF DURABILITY RESULTS 

Figure 4.7 and Figure 4.8 present the soil-cement losses at the end of durability testing, i.e. after 12 
cycles, for wet-dry durability and freeze-thaw durability, respectively. The data for the laboratory-
molded samples and field-extracted samples are graphed side-by-side for comparing the long- and 
short-term durability results of each material combination. Note that in both figures laboratory 
samples for C2S2_S with the 3/4 in. (19 mm) FRCA material removed are not shown since there is not 
an equivalent field test section constructed with this material. Also note that the laboratory samples 
for C2S4 and C3S2 with cement-stabilized QB2 material for base and subbase applications, 
respectively, are essentially the same. Based on these combined durability test results and the results 
for the UCS tests presented in the previous section, the following observations and interpretations 
can be made: 

• The type, i.e. origin and chemical composition, of the quarry by-product material can have 
a significant impact on the wet-dry and freeze-thaw durability, particularly when long-
term durability is considered. Table 4.5 presents the chemical composition of QB2 and 
QB3 materials determined by X-Ray Fluorescence (XRF). QB materials with more dolomitic 
fines, i.e. higher magnesium oxide (MgO) contents, can develop higher strength gain over 
time and can thus contribute to better long-term durability. This is clearly seen by 
comparing the durability results for cement-stabilized samples of QB2 and QB3. Since the 
grain size distributions are quite similar for both QB2 and QB3, the chemical composition 
is a main factor that can relate to the obvious discrepancies in durability performance 
trends. QB2 has significantly higher percentages of MgO (33.4–36.7%) compared to the 
9.5–11% MgO in QB3, and thus can acquire significantly higher strength gain and improved 
durability with time. The effect of QB chemical composition on short- and long-term 
durability needs to be further investigated by considering a larger dataset to investigate 
any statistical significance of chemical composition on durability. 

Table 4.5. Chemical Composition of QB2 and QB3 Materials 

QB Material Crushing Stage 
Composition by Weight (%) 

CaO MgO SiO2 Al2O3 Fe2O3 K2O 

QB2 

Primary 54.7 36.7 6.2 0.8 0.8 0.4 

Secondary 48.5 33.4 14.1 1.6 0.9 0.8 

Tertiary 50.4 34.2 11.8 1.1 0.9 0.7 

Average 51.2 34.8 10.7 1.2 0.9 0.6 

QB3 

Primary 58.7 11.0 23.2 4.4 1.1 0.8 

Secondary 71.4 10.1 14.3 2.0 1.0 0.6 

Tertiary 71.4 9.5 14.8 2.2 0.8 0.6 

Average 67.2 10.2 17.4 2.9 1.0 0.7 

 

• The compacted density of the samples can also contribute to durability aspects, where 
samples with higher compacted densities are generally expected to be more durable. This 
was verified for the field samples extracted from C2S2, where specimen A had significantly 
lower achieved dry density than specimen B, and had significantly higher soil-cement loss 
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after 12 cycles of testing (see Table 4.4). Similarly, the field-extracted samples from C3S1 
with cement-stabilized QB3 materials had a quite low field density of 110 pcf (17.3 kN/m3), 
which is comparatively lower than the laboratory measured MDD for this material 
combination (MDD = 129.9 pcf or 20.4 kN/m3). In addition to having lower dolomitic fines 
content linked to questionable long-term durability, the low density of samples extracted 
from C3S1 might have also contributed to the poor durability of the field-extracted 
samples. This was particularly clear for the freeze-thaw durability test, which is known to 
be a harsher and more damaging test than wet-dry durability. Similar trends were 
observed for the field-extracted samples from C2S3 and C3S3 with fly ash–stabilized 
QB2/FRAP and QB2, respectively, which also had low relative densities compared to other 
field-extracted samples.  

• All field-extracted and laboratory-molded samples passed the requirements of IDOT for 
wet-dry durability testing by accumulating less than 10% average soil-cement loss after 12 
cycles of testing, except for the two field sections where fly ash was used as the chemical 
stabilizer. These two sections are C2S3 and C3S3 with fly ash–stabilized QB2/FRAP blend 
and fly ash–stabilized QB2, respectively. Comparing the durability test results of the field 
and laboratory samples, 3% cement stabilization resulted in significantly better wet-dry 
durability performance (maximum of 9.83% soil-cement loss) than what could be achieved 
with 10% Class C fly ash (17.6%-18.6% average soil cement loss for field samples with fly 
ash).  

• The field-extracted samples were obtained from test sections that were exposed to harsh 
environmental conditions for nearly three years, indicating that they have experienced 
several cycles of freezing and thawing over three harsh winters and multiple cycles of 
wetting and drying due to moisture content fluctuations. Yet, the cement-stabilized field 
QB samples showed superior performance compared to the seven-day cured samples that 
were molded in the laboratory. On the other hand, the fly ash samples showed an 
opposite trend (see side-by-side comparison of field and lab samples shown in Figure 4.7 
and Figure 4.8). It can be inferred that the strength/durability gain in cement-stabilized QB 
samples outweighs the deterioration due to climatic conditions, while cycles of 
wetting/drying and freezing/thawing incur more damage in Class C fly ash–stabilized 
samples that is not improved by long-term strength gain. It can also be inferred that the 
type and chemical composition of the fines can contribute to the chemical reactions; more 
cementation was observed with the dolomitic fines (QB2 vs. QB3) over time. 
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Figure 4.7. Average soil-cement loss at the last cycle (12th cycle) for wet-dry durability testing. 

 

 

Figure 4.8. Average soil-cement loss at the last cycle (12th cycle) for freeze-thaw durability testing. 
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CHAPTER 5: SUMMARY AND CONCLUSIONS 

5.1 SUMMARY OF RESEARCH APPROACH 

This report presented results from a study conducted at the Illinois Center for Transportation (ICT) 
and the Illinois Department of Transportation (IDOT) Central Bureau of Materials (CBM) focusing on 
the freeze-thaw and wet-dry durability behavior of chemically stabilized applications of Quarry By-
products (QB) in flexible pavements. The base and subbase applications of QB studied involved 3% 
cement- or 10% fly ash–stabilized QB materials and QB blends with recycled coarse aggregates, 
namely Fractionated Reclaimed Asphalt Pavements (FRAP) or Fractionated Reclaimed Concrete 
Aggregates (FRCA). The QB applications studied for durability were previously evaluated for field 
performance trends through accelerated pavement testing (APT), which provided a unique 
opportunity to collect field samples with known performance to check their durability due to varying 
climatic conditions of freeze-thaw and wet-dry cycles. 

In total, 56 samples were tested for the wet-dry and freeze-thaw durability. Half of the samples were 
newly prepared samples in the laboratory, while the other half was extracted from seven full-scale 
field test sections studied through APT. Field samples were saw-cut into cuboid prisms having the 
dimensions of an inscribed cuboid in the standard Proctor mold. Freeze-thaw and wet-dry durability 
tests were conducted as per AASHTO T 136 and T 135, respectively. Both standards involve firm 
brushing of samples using a steel wire brush. A brushing pattern was selected for both field and 
laboratory samples to account for sample geometry and ensure that all areas in each sample receive 
at least two firm strokes with the wire brush at each cycle of testing. After each cycle of wet-dry and 
freeze-thaw durability, samples were weighted to calculate the brushed loss, the cumulative brushed 
loss, and the percentage of soil-cement loss.  

All wet-dry durability samples survived the 12 cycles of wetting and drying required by the AASHTO T 
135 standard test. For freeze-thaw durability testing by the AASHTO T 136 standard, some of the 
samples experienced layer separation and significant deterioration that prevented the completion of 
testing and further brushing of intact samples. In such occasions, the results for soil-cement loss were 
extrapolated by curve fitting the data to provide an estimate of the soil-cement loss after 12 freezing 
and thawing cycles. An estimate or a measurement for the final corrected moisture content at the 
end of wet-dry and freeze-thaw durability testing was provided for each tested sample. The final 
moisture content was corrected for the water of hydration of cement by assuming a quarter of a 
percent (0.25%) of the cement content in the specimen, as recommended by the Portland Cement 
Association (PCA) equation. No correction was applied for fly ash samples due to lack of literature.  

5.2 FINDINGS, CONCLUSIONS, AND RECOMMENDATIONS 

In light of the investigation of the durability aspects of seven sustainable QB applications and the 
satisfactory wet-dry and freeze-thaw durability demonstrated for some of the material combinations, 
particularly for the field samples that were cured over a longer period of time, the following findings, 
conclusive remarks, and recommendations can be offered: 



38 

• Wet-dry durability resulted in lower percentages of soil-cement loss compared to freeze-
thaw durability for most laboratory-molded and field-extracted samples. The AASHTO T 
136 freeze-thaw durability testing procedure was found to be a harsh and destructive test 
for chemically stabilized QB materials and QB blends with FRAP/FRCA. Some of the 
material combinations that showed successful field performance under accelerated 
pavement testing failed to accumulate less than 10% of soil-cement loss after 12 cycles of 
testing, particularly for freeze-thaw durability testing, which is the standard IDOT 
procedure to select a cement content for chemically stabilized base and subbase 
applications. 

• All laboratory-molded samples and all cement-stabilized samples extracted from the field 
had satisfactory wet-dry durability. Fly ash–stabilized samples extracted from the field 
accumulated significantly higher soil-cement loss after 12 cycles, indicating a poor 
performance of fly ash. It can be concluded that fly ash–stabilized field sections were less 
durable and lost strength/durability with exposure to freeze-thaw and wet-dry cycles in 
the field for around three years. 

• Chemical composition of the QB material was found to have a significant effect on the 
durability of chemically stabilized QB applications, particularly when long-term durability is 
considered. QB2 material with more dolomitic QB fines, i.e. with higher magnesium oxide 
contents, had more long-term strength gain and better durability than QB3 material with 
higher calcium limestone fines. The cement-stabilized QB2 materials or QB2 blended with 
FRAP/FRCA benefited from higher dolomitic fines content and significantly increased the 
long-term durability of the field samples. The lower density of the cement-stabilized QB3 
samples extracted from the field test section also contributed to the poorer durability 
performance of chemically stabilized QB3 fines. 

• Possible trends observed between durability and unconfined compressive strength 
characteristics of different material combinations were somewhat inconclusive. This 
warrants the need for further and more extensive investigations on the cementation type 
improvement observed with dolomitic fines and related mechanisms of long-term 
strength and durability characteristics. 

Given the satisfactory performance of the cement-stabilized field test sections in project ICT R27-168, 
and given the results from this durability study, particularly for the field extracted specimens, the 
following recommendations can be made for the proper implementation of the investigated QB 
pavement applications: 

• QB test sections constructed from QB2 or QB2 blended with FRAP or FRCA and stabilized 
with cement have the highest potential for implementation. These test sections generally 
showed superior field performance and satisfactory wet-dry durability. The mix designs 
can be slightly altered to ensure freeze-thaw durability and sufficient unconfined 
compressive strengths are obtained. Cement-stabilized QB3 applications shall also be 
recommended for base and subbase layers, but proper field compaction is required and 
the mix design, i.e. the percentage of cement, might be slightly increased to ensure that 
durability aspects are met. 
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• The use of FRAP or FRCA as a coarse aggregate forming the primary skeleton of the QB-
FRAP/FRCA-cement mixes had positive effects on load carrying capacity and field 
performance. At the same time, the use of recycled coarse aggregates did not result in 
adverse loss of durability. Thus, the use of mix designs of QB and recycled coarse 
aggregates shall be encouraged as a successful and sustainable implementation 
alternative.  

• The fly ash–stabilized applications of QB needs to be revisited before implementation. An 
adequate evaluation of the long-term durability aspects and factors contributing to the 
wet-dry and freeze-thaw durability of these applications were not fully achieved in this 
study. Based on the current findings, fly ash–stabilized QB applications shall be 
recommended for short-term improvements such as improved subgrade and subbase 
applications. Utilizing fly ash–stabilized QB mixes in base course applications requires 
further investigations of long-term durability and field performance. Note that fly ash–
stabilized QB applications had higher material variability and did not perform comparable 
to the cement-stabilized applications of QB investigated in the field rutting study of the 
R27-168 project. 

• Overall, the lightly stabilized applications of QB investigated in this project and the 
previous R27-168 project prove that the investigated QB applications are readily 
implementable. It is advisable that mix designs be checked for both durability and 
unconfined compressive strength results and a certain low percentage of cement, such as 
3% by weight studied herein, adequately meet the strength and durability criteria 
prescribed in IDOT’s Standard Specifications for Road and Bridge Construction are met.  

5.3 RECOMMENDATONS FOR FUTURE WORK 

The wet-dry and freeze-thaw durability evaluations of QB and QB blended with recycled coarse 
aggregates for base and subbase applications studied in this project have shown several potentially 
successful applications of QB in pavements, especially with the satisfactory field performance trends 
that were observed for these stabilized base and subbase applications from the previous research 
project ICT-R27-168. However, certain aspects of this study may require further investigation. The 
following discussion points summarize the main recommendations for future research: 

• There is a likely need to further investigate the effect of QB source on wet-dry and freeze-
thaw durability for reassurance. Preliminary results from two QB sources (QB2 and QB3) 
indicated a significant effect of QB source on durability, despite the results of field evaluation, 
which indicated no significant differences in surface rut accumulation in test sections 
constructed with the same two sources in project ICT-R27-168. Given that only few replicate 
samples were investigated in this durability study and the low field densities of samples 
extracted from C3S1 with cement-stabilized QB3 material, it is recommended that more 
samples and more QB sources are tested. Further, it is recommended that the durability study 
is accompanied with a thorough investigation of the chemical composition of each QB source 
investigated. 
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• There is a need to further investigate the effect of mix proportions of QB with coarse-recycled 
aggregates on wet-dry and freeze-thaw durability. This study has investigated the durability of 
samples with QB mixed with coarse fractions of RAP or RCA at a blending ratio of 70% QB with 
30% FRAP or FRCA. Different mix proportions with other blending ratios that may provide 
better durability need to be studied. 

• There is a need to investigate and better evaluate the effect of fly ash source and composition 
on the fly ash–stabilized mixtures, given that the fly ash used for the laboratory-molded and 
field-extracted samples might have had different chemical compositions. The durability of fly 
ash–stabilized layers/samples can vary widely depending on the source properties of fly ash, 
which was seen in the compared results of the laboratory-molded samples and field-extracted 
samples. A future research effort on this aspect may help to better isolate such effects due to 
fly ash source and composition as well as shelf life issues linked to curing duration and will 
provide a better interpretation of the fly ash–stabilized sample durability results from this 
study.  

• There is a pressing need to study the parent rock type/source and composition of QB fines on 
durability and field performance. This study has indicated that samples with QB2 having 
higher percentages of dolomitic fines benefited from higher magnesium oxide content for 
better long-term wet-dry and freeze-thaw durability. A comprehensive study is needed to 
investigate the effect of dolomitic aggregate QB composition and properties on the long-term 
cementation mechanism for the potential advantage of this by-product material, especially in 
low-volume construction. The study would establish key knowledge on the material behavior 
of different types and compositions of dolomite aggregates and benefit the state of Illinois by 
better utilizing large stockpiles of dolomitic quarry by-products available in road construction 
while achieving low cost, durable, and low-maintenance foundation layers.  
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APPENDIX A: DETAILED WET-DRY DURABILITY TEST RESULTS 

This appendix provides detailed results for the wet-dry durability testing. In total, 28 samples (14 
laboratory and 14 field samples) were tested for wet-dry durability as per the AASHTO T 135 
standard. Detailed results for the soil-cement loss (%) at each of the 12 cycles, and the cumulative 
brushed loss are provided for each sample. Note that the y-axis scales are different for each sample 
to better visualize the data. The following appendix consists of two figures and one table: 

• Figure A.1 provides a compilation of wet-dry durability results for the seven material 
combinations for samples molded in the laboratory.  

• Figure A.2 provides a compilation of wet-dry durability results for the seven material 
combinations extracted from the field test sections constructed for ICT-R27-168. 

• Table A.1 summarizes the final corrected moisture contents (%) for all laboratory and field 
wet-dry durability samples. 
 

  
(a) C2S1_A: QB2 + FRAP + Cement (b) C2S1_B: QB2 + FRAP + Cement 

  
(c) C2S2-S_A: QB2 + FRCA (- ¾ in.) + Cement (d) C2S2-S_B: QB2 + FRCA (- ¾ in.) + Cement 

Figure A.1. Compilation of wet-dry durability test results for laboratory-molded samples. 
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(e) C2S2-R_A: QB2 + FRCA + Cement (f) C2S2-R_B: QB2 + FRCA + Cement 

  
(g) C2S3_A: QB2 + FRAP + Fly Ash (h) C2S3_B: QB2 + FRAP + Fly Ash 

  
(i) C2S4_A: QB2 + Cement (j) C2S4_B: QB2 + Cement 

Figure A.1 (Cont’d). Compilation of wet-dry durability test results for laboratory-molded samples. 
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(k) C3S1_A: QB3 + Cement (l) C3S1_B: QB3 + Cement 

  
(m) C3S3_A: QB2 + Fly Ash (n) C3S3_B: QB2 + Fly Ash 

Figure A.1 (Cont’d). Compilation of wet-dry durability test results for laboratory-molded samples. 
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(a) C2S1_A: QB2 + FRAP + Cement (b) C2S1_B: QB2 + FRAP + Cement 

  
(c) C2S2_A: QB2 + FRCA + Cement (d) C2S2_B: QB2 + FRCA + Cement 

  
(e) C2S3_A: QB2 + FRAP + Fly Ash (f) C2S3_B: QB2 + FRAP + Fly Ash 

Figure A.2. Compilation of wet-dry durability test results for field-extracted samples. 
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(g) C2S4_A: QB2 + Cement (h) C2S4_B: QB2 + Cement 

  
(i) C3S1_A: QB3 + Cement (j) C3S1_B: QB3 + Cement 

  
(k) C3S2_A: QB2 + Cement (l) C3S2_B: QB2 + Cement 

Figure A.2 (Cont’d). Compilation of wet-dry durability test results for field-extracted samples. 
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(m) C3S3_A: QB2 + Fly Ash (n) C3S3_B: QB2 + Fly Ash 

Figure A.2 (Cont’d). Compilation of wet-dry durability test results for field-extracted samples. 

 

Table A.1. Final Corrected Moisture Content (%) for Wet-Dry Durability Samples 

Sample Name 
Laboratory-Molded Samples Field-Extracted Samples 

Specimen A Specimen B Specimen A Specimen B 

C2S1 1.15  1.19 0.86 0.87 

C2S2_S 1.40 1.66 N/A N/A 

C2S2_R (C2S2) * 1.59 1.76 0.98 1.05 

C2S3 0.52 0.47 0.16 0.20 

C2S4 0.90 0.91 0.84 0.80 

C3S1 0.88 0.93 0.83 0.87 

C3S2 N/A** N/A** 0.81 0.88 

C3S3 0.31 0.36 0.06 0.06 

* Laboratory samples for C2S2 are denoted C2S2_R to differentiate from C2S2_S. 

** Same material combination as C2S4. Refer to the results for C2S4. 
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APPENDIX B: DETAILED FREEZE-THAW DURABILITY TEST RESULTS 

This appendix provides detailed results for the freeze-thaw durability testing. In total, 28 samples (14 
laboratory and 14 field samples) were tested for freeze-thaw durability as per the AASHTO T 136 
standard. Detailed results for the soil-cement loss (%) at each of the 12 cycles, and the cumulative 
brushed loss are provided for each sample. Note that the y-axis scales are different for each sample 
to better visualize the data. The following Appendix consists of two figures and one table: 

• Figure B.1 (Cont’d) provides a compilation of freeze-thaw durability results for the seven 
material combinations for samples molded in the laboratory. 

• Figure B.2 provides a compilation of freeze-thaw durability results for the seven material 
combinations extracted from the field test sections constructed for R27-168. 

• Table B.1 summarizes the final corrected moisture contents (%) for all laboratory and field 
freeze-thaw durability samples. 

 

  
(a) C2S1_A: QB2 + FRAP + Cement (b) C2S1_B: QB2 + FRAP + Cement 

  
(c) C2S2-S_A: QB2 + FRCA (- ¾ in.) + Cement (d) C2S2-S_B: QB2 + FRCA (- ¾ in.) + Cement 

Figure B.1. Compilation of freeze-thaw durability test results for laboratory-molded samples. 
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(e) C2S2-R_A: QB2 + FRCA + Cement (f) C2S2-R_B: QB2 + FRCA + Cement 

  
(g) C2S3_A: QB2 + FRAP + Fly Ash (h) C2S3_B: QB2 + FRAP + Fly Ash 

  
(i) C2S4_A: QB2 + Cement (j) C2S4_B: QB2 + Cement 

Figure B.1 (Cont’d). Compilation of freeze-thaw durability test results for  
laboratory-molded samples. 
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(k) C3S1_A: QB3 + Cement (l) C3S1_B: QB3 + Cement 

  
(m) C3S3_A: QB2 + Fly Ash (n) C3S3_B: QB2 + Fly Ash 

Figure B.1 (Cont’d). Compilation of freeze-thaw durability test results for  
laboratory-molded samples. 
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(a) C2S1_A: QB2 + FRAP + Cement (b) C2S1_B: QB2 + FRAP + Cement 

  
(c) C2S2_A: QB2 + FRCA + Cement (d) C2S2_B: QB2 + FRCA + Cement 

  
(e) C2S3_A: QB2 + FRAP + Fly Ash (f) C2S3_B: QB2 + FRAP + Fly Ash 

Figure B.2. Compilation of freeze-thaw durability test results for field-extracted samples. 
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(g) C2S4_A: QB2 + Cement (h) C2S4_B: QB2 + Cement 

  
(i) C3S1_A: QB3 + Cement (j) C3S1_B: QB3 + Cement 

  
(k) C3S2_A: QB2 + Cement (l) C3S2_B: QB2 + Cement 

Figure B.2 (Cont’d). Compilation of freeze-thaw durability test results for field-extracted samples. 
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(m) C3S3_A: QB2 + Fly Ash (n) C3S3_B: QB2 + Fly Ash 

Figure B.2 (Cont’d). Compilation of freeze-thaw durability test results for field-extracted samples. 

 

 

Table B.1. Final Corrected Moisture Content (%) for Freeze-Thaw Durability Samples 

Sample Name 
Laboratory-Molded Samples Field-Extracted Samples 

Specimen A Specimen B Specimen A Specimen B 

C2S1 11.8 11.8 11.6 11.1 

C2S2_S 13.6 13.6 N/A N/A 

C2S2_R (C2S2) * 13.2 13.2 13.4 9.8 

C2S3 8.8 8.8 9.4 9.6 

C2S4 11.6 11.6 9.0 9.0 

C3S1 11.8 11.4 16.2 15.7 

C3S2 N/A** N/A** 7.5 8.0 

C3S3 9.3 9.3 9.2 8.8 

* Laboratory samples for C2S2 are denoted C2S2_R to differentiate from C2S2_S. 

** Same material combination as C2S4. Refer to the results for C2S4. 
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	EXECUTIVE SUMMARY 
	This Illinois Center for Transportation (ICT) report (R27-SP38) presented results from a study conducted at ICT and the Illinois Department of Transportation (IDOT) Central Bureau of Materials (CBM) to investigate the freeze-thaw and wet-dry durability behavior of chemically stabilized applications of quarry by-products (QB) in flexible pavements. The QB applications investigated for durability were previously evaluated for field performance using Accelerated Pavement Testing (APT) in the ICT-R27-168 projec
	The base and subbase applications of QB studied involved 3% cement- or 10% fly ash–stabilized QB materials and QB blends with recycled coarse aggregates, namely Fractionated Reclaimed Asphalt Pavements (FRAP) or Fractionated Reclaimed Concrete Aggregates (FRCA). Blending ratios of 70% QB and 30% FRAP/FRCA were investigated. Two QB sources used in the R27-168 project were also utilized in this durability study. These are denoted by QB2 and QB3 hereafter. In total, 56 samples were tested for wet-dry and freez
	All cement- and fly ash–stabilized laboratory samples and all cement-stabilized field samples tested for wet-dry durability by AASHTO T 135 survived the standard 12 cycles of wetting and drying by accumulating less than 10% soil-cement loss. From the freeze-thaw durability testing by AASHTO T 136, some of the samples had layer separation and significant deterioration at early stages of testing, which prevented the completion of tests with the requirement of further brushing. In such occasions, the results f
	content was corrected for the water of hydration of cement, which was considered 1/4 of the percent cement in the specimen for cement-stabilized samples and zero for fly ash–stabilized samples. 
	Considering the investigation of the durability aspects of seven sustainable QB applications, satisfactory wet-dry and freeze-thaw durability test results were observed for cement-stabilized QB2 materials or QB2 blended with coarse-recycled aggregates. Wet-dry durability resulted in lower percentages of soil-cement loss compared to freeze-thaw durability for the majority of laboratory and field samples, indicating that the AASHTO T 136 freeze-thaw durability is a harsher and more destructive test for chemic
	One key finding of the durability tests is that the chemical composition of the QB material can influence the durability of the investigated sustainable QB applications, particularly when long-term durability (i.e. several years of service) is considered. QB2 material with higher percentages of dolomitic fines had more long-term strength gain and better durability than QB3 material, which had higher percentages of calcium limestone fines. The presence of dolomitic fines might have significantly increased th
	Unconfined Compressive Strength (UCS) tests were also conducted concurrently with durability testing to ascertain that both durability and strength requirements were studied together for sustainable QB pavement applications and checked against IDOT requirements and specifications. In addition, the UCS tests served as a check for material mechanical property variability, particularly with stabilizing agents, between the newly molded laboratory samples and the materials that were previously used to construct 
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	CHAPTER 1: INTRODUCTION 
	1.1 BACKGROUND AND MOTIVATION 
	Quarry by-products (QB) are an industrial by-product of aggregate quarry processes. They are typically less than 1/4 in. (6 mm) in size and consist of coarse, medium, and fine sand particles and a small clay/silt fraction. Quarry by-products are found abundantly at crushed-rock extraction facilities in Illinois, where they are produced during blasting, crushing, washing, and screening operations. Excess QB produced each year exceeds 950,000 tons according to a questionnaire responded to by 20 of the largest
	Work conducted at the Illinois Center for Transportation (ICT) has evaluated the characteristics of QB materials collected from different quarries across Illinois and studied potential uses of QB in pavement applications. As part of an ICT project to characterize QB materials (R27-125), a detailed laboratory study was conducted to characterize the engineering properties of QB materials produced in the primary, secondary, and tertiary aggregate production stages from four quarries operating in Illinois. Prop
	More recently, a follow-up project was conducted to further investigate the field performance of QB materials in pavement applications. The project ICT-R27-168 evaluated new sustainable applications of QB or QB mixed with marginal (i.e. primary crusher run aggregates), virgin, or recycled aggregate materials in unbound and chemically stabilized pavement layers tested under realistic wheel loads and environmental conditions (Qamhia et al., 2018; Qamhia et al., 2019). Sixteen full-scale test sections were eva
	investigated QB applications. The improved performance was quantified through lower surface rut measurements, lower surface deflection measurements with FWD, and higher layer strength profiles measured with DCP (Qamhia et al., 2018; Qamhia et al., 2019).  
	Previous QB research conducted at ICT has proven the satisfactory pavement performance and promising usage for abundant quantities of stabilized quarry by-product materials in pavements. Detailed findings on the surface rut profiles are presented in Chapter 2. This is both environmentally friendly and economical to advocate more sustainable pavement construction with QB materials. For the QB applications of the project ICT-R27-168 to be deemed readily implementable, durability aspects, i.e. wet-dry and free
	1.2 OBJECTIVE AND SCOPE 
	The main objective of this project was to investigate the freeze-thaw and wet-dry durability performances for quarry by-product materials and mixtures of quarry by-products with recycled aggregates used as base and subbase materials in sustainable pavement applications. The seven QB applications investigated for durability aspects entailed samples of 100% QB and samples of 70% QB blended with 30% coarse Fractionated Reclaimed Asphalt Pavements (FRAP) or Fractionated Recycled Concrete Aggregates (FRCA). Samp
	1.3 STUDIED QUARRY BY-PRODUCT APPLICATIONS 
	In total, seven bound applications of aggregate QB mixtures were evaluated for durability aspects and UCS. These QB applications and mixtures were selected based on successful outcomes of previous studies that provided evaluations of QB materials in laboratory and field testing (Tutumluer et al. 2015; Qamhia et al. 2018; Qamhia et al., 2019). Both field-extracted and laboratory-molded samples with these material combinations were studied for wet-dry and freeze-thaw durability aspects.  
	The investigated material combinations with sustainable QB applications can be broadly divided into the following three categories: 
	• Stabilized base with recycled coarse aggregate—Blending QB with coarse aggregate fractions of recycled materials FRAP and FRCA and stabilizing the blends with cement or Class C fly ash for base applications. Three applications were investigated under this category, namely: QB-FRAP-cement, QB-FRCA-cement, and QB-FRAP-fly ash mixtures. 
	• Stabilized base with recycled coarse aggregate—Blending QB with coarse aggregate fractions of recycled materials FRAP and FRCA and stabilizing the blends with cement or Class C fly ash for base applications. Three applications were investigated under this category, namely: QB-FRAP-cement, QB-FRCA-cement, and QB-FRAP-fly ash mixtures. 
	• Stabilized base with recycled coarse aggregate—Blending QB with coarse aggregate fractions of recycled materials FRAP and FRCA and stabilizing the blends with cement or Class C fly ash for base applications. Three applications were investigated under this category, namely: QB-FRAP-cement, QB-FRCA-cement, and QB-FRAP-fly ash mixtures. 

	• Stabilized base—Using QB as a cement-treated base material. Two applications were investigated under this category entailing two QB materials from different quarries and having different chemical compositions mixed with cement. 
	• Stabilized base—Using QB as a cement-treated base material. Two applications were investigated under this category entailing two QB materials from different quarries and having different chemical compositions mixed with cement. 

	• Stabilized subbase in an inverted pavement—Using QB as a cement or fly ash–treated subbase. Two applications were investigated under this category using QB from the same source, namely, QB-cement and QB-fly ash mixtures. 
	• Stabilized subbase in an inverted pavement—Using QB as a cement or fly ash–treated subbase. Two applications were investigated under this category using QB from the same source, namely, QB-cement and QB-fly ash mixtures. 


	In addition to the material combinations listed above and given the grain size distribution of the FRCA material that had particles up to 1.5 in. (37 mm) in size, a material combination of QB with no FRCA material larger than 3/4 in. (19 mm) was also molded in the laboratory to eliminate any effect of large FRCA particle on durability results. This step was applied to test materials that complied with the gradation requirements of the standard test methods used in wet-dry and freeze-thaw durability in this 
	1.4 REPORT ORGANIZATION 
	This report consists of five chapters, including this introductory chapter. 
	Chapter 2, titled “Literature Review,” provides a brief review of the previous studies associated with using QB and recycled materials in pavement applications, particularly literature for past research that evaluated the durability of QB materials and QB blended with recycled aggregates. 
	Chapter 3, titled “Sample Preparation and Testing,” provides a discussion of material selection and sample preparation and testing. This chapter presents details for the extraction and saw-cutting of the field samples and the molding and curing of laboratory samples for durability and UCS testing. The assumptions made during and after testing as well as sample performance during wet-dry and freeze-thaw durability testing are summarized in detail in this chapter. 
	Chapter 4, titled “Results and Interpretations,” provides details of sample performance under durability and UCS testing. Results for wet-dry durability by AASHTO T 135 and freeze-thaw durability by AASHTO T 136 are presented and discussed in detail. The durability aspects and UCS characteristics of the freshly molded laboratory samples cured for seven days were compared with those of field-extracted samples that were left to cure for three years. The field-extracted samples were exposed to several cycles o
	Chapter 5, titled “Summary and Conclusions,” provides a summary of the test results, the main recommendations, and conclusions from the durability evaluations of QB applications. This chapter also discusses promising implementation projects as the next steps to further study, as well as some recommendations for future research. 
	  
	CHAPTER 2: LITERATURE REVIEW 
	2.1 INTRODUCTION 
	The importance of utilizing aggregate quarry by-products (QB) in pavement applications stems from the vast quantities that are produced and remain in excess within many quarries each year. QB stockpiling and disposal is a serious issue facing the aggregate industry, as they accumulate in stockpiles and interfere with quarry operations (Hudson et al., 1997). A report by the Federal Highway Administration estimated the quantity of quarry by-products generated in the United States each year to exceed 175 milli
	Given these massive quantities, and the negative environmental/economic consequences that result from QB accumulation at quarries, the investigation of successful applications of QB as a sustainable and inexpensive construction alternative for pavements has become imperative. For successful implementation of QB applications, comprehensive research needs to be conducted to understand the performance and the economic and sustainable aspects of QB usage, which requires laboratory and field evaluation of these 
	Given these massive quantities, and the negative environmental/economic consequences that result from QB accumulation at quarries, the investigation of successful applications of QB as a sustainable and inexpensive construction alternative for pavements has become imperative. For successful implementation of QB applications, comprehensive research needs to be conducted to understand the performance and the economic and sustainable aspects of QB usage, which requires laboratory and field evaluation of these 
	Sustainable Aggregates Production: Green Applications for Aggregate By-Products
	Sustainable Aggregates Production: Green Applications for Aggregate By-Products

	,” focused earlier on the laboratory characterization of unbound and chemically stabilized QB materials (Tutumluer et al., 2015). The recent project ICT-R27-168, titled, “
	Field Performance Evaluations of Sustainable Aggregate By-Product Applications
	Field Performance Evaluations of Sustainable Aggregate By-Product Applications

	,” evaluated the field performance trends of 16 sustainable QB applications with accelerated pavement testing (Qamhia et al., 2018). This ICT-R27-SP38 project intends to evaluate the durability of QB applications under varying seasonal/climatic temperature and moisture variations resulting in freeze-thaw and wet-dry cycles. 

	2.2 PAST QB RESEARCH AT ICT 
	Prior to conducting this durability study, several studies were conducted at the Illinois Center of Transportation (ICT) and the Advanced Transportation Research and Engineering Laboratory (ATREL) of the University of Illinois to study QB materials. As part of the project ICT-R27-125, several QB materials were collected from different crushing stages from four quarries in Illinois and were tested for their physical and mechanical properties. Atterberg limits testing was conducted in accordance with the ASTM
	study also reported that the compressive strength properties of untreated QB could be relatively low and recommended stabilizing QB materials for pavement applications. 
	Further, Tutumluer et al. (2015) concluded that the harmful clay content of QB materials was generally less than 3% for different sources and crushing stages. The same study reported that QB from primary crushing stages generally comprised higher contents of harmful clay. Direct shear tests were performed in accordance with ASTM D3080 on QB materials selected from different crushing stages in the same quarry. The friction angles obtained for primary, secondary, and tertiary crusher QB samples were rather hi
	Further, Tutumluer et al. (2015) concluded that the harmful clay content of QB materials was generally less than 3% for different sources and crushing stages. The same study reported that QB from primary crushing stages generally comprised higher contents of harmful clay. Direct shear tests were performed in accordance with ASTM D3080 on QB materials selected from different crushing stages in the same quarry. The friction angles obtained for primary, secondary, and tertiary crusher QB samples were rather hi
	Figure 2.1
	Figure 2.1

	. Note that Q1–Q3 shown in 
	Figure 2.1
	Figure 2.1

	 do not correspond, in the same order, to QB1–QB3 naming for the QB sources utilized in the R27-SP38 and R27-168 projects. 

	 
	Figure
	Figure 2.1. Average UCS for virgin, 2% cement-, and 10% Class C fly ash–treated QB materials.  1 psi = 6.9 kPa. (Source: Tutumluer et al., 2015) 
	In a laboratory study conducted by LaHucik et al. (2016a, 2016b), various proportions of cement-treated mixes of QB and Fractionated Reclaimed Asphalt Pavement (FRAP) or virgin coarse aggregates were evaluated. Based on aggregate packing tests conducted with different proportions of QB and FRAP by weight, an optimal blending ratio of 70% QB with 30% FRAP was found to maximize density/minimize void content. LaHucik et al. (2016b) also evaluated mix-design performances through strength tests (compression/spli
	cement content exceeded the strength of typical cement-stabilized base materials reported in the literature. More details about this study including the performed statistical analysis are presented in LaHucik et al. (2016a, 2016b). Test results for UCS, split tensile strength, and resilient modulus are detailed in 
	cement content exceeded the strength of typical cement-stabilized base materials reported in the literature. More details about this study including the performed statistical analysis are presented in LaHucik et al. (2016a, 2016b). Test results for UCS, split tensile strength, and resilient modulus are detailed in 
	Figure 2.2
	Figure 2.2

	. For the naming of samples, the first number (e.g. 2) refers to the percentage of cement by volume; the second letter (R or V) refers to Recycled or Virgin coarse aggregates, respectively; while the third letter (F or N) refers to “Fibers used” or “Not used” during sample preparation.  
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	Figure 2.2. Results for (a) UCS, (b) split tensile strength, and (c) elastic modulus for QB samples blended with FRAP or virgin aggregates. 1 MPa = 145 psi. (Source: LaHucik et al., 2016a) 
	A more recent project, ICT-R27-168, focused on evaluating new sustainable applications of Quarry By-products (QB) or QB mixed with aggregate subgrade (i.e. primary crusher run aggregates) and other virgin or recycled aggregate materials in pavements as unbound or chemically stabilized pavement layers. Sixteen full-scale test sections, including seven test sections with stabilized QB applications, were constructed to evaluate the use of QB in base, subbase, and aggregate subgrade applications. The chemically
	The unbound applications of QB investigated (i) the use of QB to fill the voids between large aggregate subgrade rocks commonly used for rockfill applications on top of soft subgrade soils and (ii) the dense-graded aggregate subgrade layers with higher fines content up to 15% passing No. 200 sieve for soft subgrade remediation. All field test sections were then evaluated for rutting and fatigue performance by applying traffic loading using a super single wheel in Accelerated Pavement Testing (APT) (Qamhia e
	The unbound applications of QB investigated (i) the use of QB to fill the voids between large aggregate subgrade rocks commonly used for rockfill applications on top of soft subgrade soils and (ii) the dense-graded aggregate subgrade layers with higher fines content up to 15% passing No. 200 sieve for soft subgrade remediation. All field test sections were then evaluated for rutting and fatigue performance by applying traffic loading using a super single wheel in Accelerated Pavement Testing (APT) (Qamhia e
	Figure 2.3
	Figure 2.3

	. Note that the seven pavement sections (C2S1–C3S3) with stabilized QB applications (see 
	Figure 2.3
	Figure 2.3

	) that showed better performance and were tested up to 135,000 cycles have been the subject for investigation for wet-dry and freeze-thaw durability in this project. A detailed description of the materials and layer thicknesses are presented in Table 2.1. Sections C2S1–C3S3 from which durability samples were extracted are indicated in bold in Table 2.1. Three QB materials, i.e. QB1, QB2, and QB3, obtained from three quarries in Illinois were utilized.  

	Following APT, forensic analysis tests were conducted to further evaluate test section performances. These tests included Falling Weight Deflectometer (FWD) tests before and after trafficking, hot-mix asphalt coring, Dynamic Cone Penetrometer (DCP) profiling of subsurface layers, and trenching to expose the cross sections of the constructed sections. In general, results from the APT and forensic analyses indicated that satisfactory results and improved rutting performance (less than 0.5 in. or 12.5 mm of ru
	 
	Figure
	Figure 2.3. Surface wheel path rut accumulations of test sections with the  QB applications studied in project ICT-R27-168.  
	Table 2.1. Descriptions of QB Applications Studied in Project ICT-R27-168  (Flexible Pavement Applications) 
	Section ID 
	Section ID 
	Section ID 
	Section ID 
	Section ID 

	QB Field Application 
	QB Field Application 

	Description / Material Combination 
	Description / Material Combination 

	Pavement Cross Section 
	Pavement Cross Section 



	C1S1 
	C1S1 
	C1S1 
	C1S1 

	Aggregate Subgrade 
	Aggregate Subgrade 

	Primary Crusher Run (PCR) rocks with 25% QB1 filling the voids; constructed in two lifts 
	Primary Crusher Run (PCR) rocks with 25% QB1 filling the voids; constructed in two lifts 

	  
	  
	Figure
	             C1S1–C1S4 


	TR
	C1S2 
	C1S2 

	Aggregate Subgrade 
	Aggregate Subgrade 

	(PCR) rocks with 16.7% QB1 filling the voids; constructed in one lift 
	(PCR) rocks with 16.7% QB1 filling the voids; constructed in one lift 


	TR
	C1S3 
	C1S3 

	Aggregate Subgrade 
	Aggregate Subgrade 

	Dense-graded CA06 aggregates with 15% plastic fines content (passing No. 200 sieve) with a plasticity index (PI) of 8  
	Dense-graded CA06 aggregates with 15% plastic fines content (passing No. 200 sieve) with a plasticity index (PI) of 8  


	TR
	C1S4 
	C1S4 

	Aggregate Subgrade 
	Aggregate Subgrade 

	Dense-graded CA06 aggregates with 15% nonplastic (PI=0) fines content 
	Dense-graded CA06 aggregates with 15% nonplastic (PI=0) fines content 


	C2S1* 
	C2S1* 
	C2S1* 

	Stabilized 
	Stabilized 
	Base with FRAP 

	A blend of 70% QB2 and 30% FRAP, stabilized with 3% Type I cement 
	A blend of 70% QB2 and 30% FRAP, stabilized with 3% Type I cement 

	 
	 
	     
	Figure
	             C2S1–C2S4, C3S1, and C3S4 
	 
	 
	 
	Figure
	            C3S2 and C3S3 


	TR
	C2S2* 
	C2S2* 

	Stabilized 
	Stabilized 
	Base with FRCA 

	A blend of 70% QB2 and 30% FRCA, stabilized with 3% Type I cement 
	A blend of 70% QB2 and 30% FRCA, stabilized with 3% Type I cement 


	TR
	C2S3* 
	C2S3* 

	Stabilized 
	Stabilized 
	Base with FRAP 

	A blend of 70% QB2 and 30% FRAP, stabilized with 10% Class C fly ash 
	A blend of 70% QB2 and 30% FRAP, stabilized with 10% Class C fly ash 


	TR
	C2S4* 
	C2S4* 

	Stabilized Base 
	Stabilized Base 

	QB2 stabilized with 3% cement 
	QB2 stabilized with 3% cement 


	TR
	C3S1* 
	C3S1* 

	Stabilized Base 
	Stabilized Base 

	QB3 stabilized with 3% cement 
	QB3 stabilized with 3% cement 


	TR
	C3S2* 
	C3S2* 

	Stabilized Subbase 
	Stabilized Subbase 

	QB2 stabilized with 3% cement 
	QB2 stabilized with 3% cement 


	TR
	C3S3* 
	C3S3* 

	Stabilized Subbase 
	Stabilized Subbase 

	QB2 stabilized with 10% Class C fly ash 
	QB2 stabilized with 10% Class C fly ash 


	TR
	C3S4 
	C3S4 

	Unbound Aggregate Base 
	Unbound Aggregate Base 

	Conventional base course aggregate material; no chemical stabilization 
	Conventional base course aggregate material; no chemical stabilization 


	* Indicates test sections from which samples were extracted for wet-dry and freeze-thaw durability studies  
	* Indicates test sections from which samples were extracted for wet-dry and freeze-thaw durability studies  
	* Indicates test sections from which samples were extracted for wet-dry and freeze-thaw durability studies  




	2.3 QUARRY BY-PRODUCT APPLICATIONS IN PAVEMENTS  
	NCHRP synthesis 435 (volume 4) summarized the different uses of QB in pavement applications from a limited number of research projects and highway applications and evaluated usage of QB and mineral by-products, most of which focused on bound layer applications (Stroup-Gardiner & Wattenberg-Komas, 2013). The following QB applications were listed for bound pavement layers: (1) Portland cement substitution, (2) Portland cement concrete, (3) self-consolidating concrete, (4) hot-mix asphalt, and (4) stabilized b
	Based on laboratory testing results, some researchers have utilized chemical stabilization and accordingly recommended specific field applications for QB. According to Kalcheff and Machemehl (1980), the stabilization of QB with cement developed relatively high rigidity with a small amount of Portland cement compared with granular soil-cement stabilization. The use of low-cement content has the advantage of decreasing the shrinkage cracking. Kumar and Hudson (1992) examined the unconfined compressive strengt
	Researchers have also investigated the field usage of QB in a stabilized base layer. In a study in Lynn County, Iowa, the use of emulsion-stabilized limestone screening was investigated as a base material (Nelson et al., 1994). Several test sections with base thicknesses of 4 to 6 in. (100 to 150 mm) and asphalt-cement contents of 2.5%, 3.5%, and 4.5% were inspected. The 4-in. (100-mm) thick base did not produce a satisfactory low-cost maintenance roadway, based on periodic crack survey data and structural 
	In a study in Arlington, Texas, the use of limestone QB was evaluated as a base material for sections of State Highway 360 (Puppala et al., 2008). A 36-in. (914-mm) thick layer of quarry fines stabilized with 2.3% cement was used as the base overlain by a 4-in. (102-mm) thick HMA and 8-in. (203-mm) thick Continuously Reinforced Concrete Pavement (CRCP) surface. Field monitoring using horizontal inclinometers showed that the sections experienced low permanent deformation during service. Additionally, the Int
	Stabilized QB mixes were also evaluated for applications such as flowable fills, soil modification, and Self-Consolidating Concrete (SCC). According to the results presented in the study by Wood and Marek (1995), using 3% cement, 8% fly ash, and 89% QB resulted in a flowable fill with adequate performance. Naik et al. (2005) examined the use of QB in SCC and reported that the addition of QB minimized the needed quantity of admixtures without reducing the strength of the SCC. Koganti and Chappidi (2012) repo
	Recent laboratory studies have also investigated the use of QB (or quarry fines) for pavement applications. Abdullah et al. (2018) conducted workability tests, flexural strength tests, and compressive strength tests on concrete samples with 100% quarry fines used for sand replacement in concrete. The study concluded that concrete samples with 100% QB as fine aggregates produced more sustainable concrete samples with better durability, compressive strength, and furnishing properties. The same study reported 
	properties of fresh cement paste with QB (diabase or gneiss quarry rock powders). They concluded that cement pastes containing QB had lower yield stress and lower viscosity than samples with cement pastes only. 
	2.4 DURABILITY OF QB IN PAVEMENT APPLICATIONS 
	Despite the promising results for using chemically stabilized aggregate QB materials in subsurface pavement applications from laboratory and field evaluations, only a few studies were conducted to evaluate the durability aspects of QB under wet-dry and freeze-thaw conditions. Further, most of these studies focused on the durability of QB or quarry dust in concrete applications as a more sustainable replacement of natural sand or fine aggregates in concrete (Ilangovana et al., 2008; Galetakis & Soultana, 201
	For the durability of QB as a base/subbase material, Eze-Uzomaka and Agbo (2010) investigated the use of cement-stabilized laterite with quarry fines used as an additive for base course applications. The study defined a durability failure as a loss in UCS exceeding 20% after durability testing. According to the study, only cement contents exceeding 8% could result in a loss of UCS not exceeding 20%, and all samples stabilized with lower cement contents failed to meet durability requirements. Gurbuz (2015) i
	  
	CHAPTER 3: SAMPLE PREPARATION AND TESTING 
	3.1 INTRODUCTION 
	This chapter presents information on the preparation, curing, and testing of samples for freeze-thaw and wet-dry durability and unconfined compressive strength characteristics. Three sets of samples were prepared as follows: (i) 28 remolded laboratory samples for freeze-thaw and wet-dry durability testing; (ii) 28 field specimens extracted from the base/subbase layers for the chemically stabilized QB sections in Cell 2 and Cell 3 (constructed for ICT-R27-168) for freeze-thaw and wet-dry durability testing; 
	3.2 EXTRACTION AND PREPARATION OF FIELD SAMPLES 
	Following trenching of the test sections in ICT-R27-168, it was realized that the chemically stabilized QB materials can be recovered in intact pieces that were large enough to extract laboratory samples for durability testing. Ideally, samples for freeze-thaw and wet-dry durability tests required by AASHTO T 136 and AASHTO T 135 standard test procedures, respectively, are cylindrical with dimensions conforming to the size of the standard Proctor mold. Earlier on in project ICT-R27-168, several attempts to 
	Ultimately, large blocks/chunks of intact stabilized QB base/subbase sections were collected to prepare field samples in the laboratory by saw-cutting. The large blocks were extracted utilizing a mini excavator. Since the test sections were trenched for project ICT-R27-168, and trenches were exposed to environmental conditions that might have eroded or changed the composition of the exposed materials over time, the remaining HMA on top of the test sections was removed. All samples for durability testing wer
	Ultimately, large blocks/chunks of intact stabilized QB base/subbase sections were collected to prepare field samples in the laboratory by saw-cutting. The large blocks were extracted utilizing a mini excavator. Since the test sections were trenched for project ICT-R27-168, and trenches were exposed to environmental conditions that might have eroded or changed the composition of the exposed materials over time, the remaining HMA on top of the test sections was removed. All samples for durability testing wer
	Figure 3.1
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	.  

	 
	Figure
	Figure 3.1. Extraction of stabilized QB materials from the test sections constructed for ICT-R27-168. 
	Following the extraction and storage of intact blocks of field samples, the samples were cut into cuboid prisms using a large saw-cutting equipment normally used for cutting hard rocks. A dry saw-cutting procedure was adopted to ensure samples do not disintegrate due to the presence of water (or other liquids such as lubricating oil normally used with this equipment for cutting hard rocks). The samples were shaped into cuboids (prisms) with a square cross section having a 2.8 in. (71 mm) side length and a 4
	Following the extraction and storage of intact blocks of field samples, the samples were cut into cuboid prisms using a large saw-cutting equipment normally used for cutting hard rocks. A dry saw-cutting procedure was adopted to ensure samples do not disintegrate due to the presence of water (or other liquids such as lubricating oil normally used with this equipment for cutting hard rocks). The samples were shaped into cuboids (prisms) with a square cross section having a 2.8 in. (71 mm) side length and a 4
	Figure 3.2
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	. Sample shape and geometry is presented in 
	Figure 3.3
	Figure 3.3

	, which also shows a size comparison to a standard Proctor sample size. Note that the samples extracted from sections with blends of quarry by-products and recycled coarse aggregates generally had a rougher surface finish than those with QB only. In particular, the samples extracted from C2S3 with QB, FRAP, and fly ash had the roughest (least uniformly cut) surface finishes. 
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	Figure 3.2. Saw-cutting procedure for field samples (top) and the  final saw-cut samples tested for durability (bottom). 
	Figure 3.2. Saw-cutting procedure for field samples (top) and the  final saw-cut samples tested for durability (bottom). 
	Figure 3.2. Saw-cutting procedure for field samples (top) and the  final saw-cut samples tested for durability (bottom). 




	 
	The as-received dry densities and the relative densities of all field-extracted samples are presented in 
	The as-received dry densities and the relative densities of all field-extracted samples are presented in 
	Table 3.1
	Table 3.1

	. The dry densities were calculated based on the as-received density and as-received moisture content of each sample, which were measured at IDOT Central Bureau of Materials (CBM). 
	Table 3.1
	Table 3.1

	 lists low relative densities of some of the extracted samples compared to the maximum dry densities determined from the laboratory compaction tests using the standard Proctor compactive effort. Specifically, samples extracted from C2S1 with cement-stabilized QB2/FRAP mixes, C2S3 with fly ash–stabilized QB2/FRAP mixes, C3S1 with cement-stabilized QB3, and C3S3 with fly ash–stabilized QB2 had the lowest field dry densities and relative densities. These low densities could result in rather poor wet-dry and fr

	 
	Table 3.1. Summary of Field Sample Dry and Relative Densities  
	Sample Name 
	Sample Name 
	Sample Name 
	Sample Name 
	Sample Name 

	Spec. 
	Spec. 

	Maximum Laboratory Dry Density (MDD) 
	Maximum Laboratory Dry Density (MDD) 
	pcf (kN/m3) 

	Wet-Dry Durability Samples 
	Wet-Dry Durability Samples 

	Freeze-Thaw Durability Samples 
	Freeze-Thaw Durability Samples 



	TBody
	TR
	As Received 
	As Received 
	Dry Density 
	pcf (kN/m3) 

	Relative Density (%) 
	Relative Density (%) 

	As Received 
	As Received 
	Dry Density 
	pcf (kN/m3) 

	Relative Density (%) 
	Relative Density (%) 


	C2S1 
	C2S1 
	C2S1 

	# A 
	# A 

	135.0 (21.2) 
	135.0 (21.2) 

	118.1 (18.6) 
	118.1 (18.6) 

	87.5 
	87.5 

	117.9 (18.5) 
	117.9 (18.5) 

	87.4 
	87.4 


	TR
	# B 
	# B 

	115.2 (18.1) 
	115.2 (18.1) 

	84.7 
	84.7 

	121.4 (19.1) 
	121.4 (19.1) 

	89.9 
	89.9 


	C2S2 
	C2S2 
	C2S2 

	# A 
	# A 

	128.6 (20.2) 
	128.6 (20.2) 

	119.0 (18.7) 
	119.0 (18.7) 

	86.9 
	86.9 

	116.8 (18.3) 
	116.8 (18.3) 

	90.8 
	90.8 


	TR
	# B 
	# B 

	124.2 (19.5) 
	124.2 (19.5) 

	90.0 
	90.0 

	127.2 (20.0) 
	127.2 (20.0) 

	99.0 
	99.0 


	C2S3 
	C2S3 
	C2S3 

	# A 
	# A 

	136.2 (21.4) 
	136.2 (21.4) 

	111.8 (17.6) 
	111.8 (17.6) 

	80.4 
	80.4 

	113.8 (17.9) 
	113.8 (17.9) 

	83.5 
	83.5 


	TR
	# B 
	# B 

	115.0 (18.1) 
	115.0 (18.1) 

	82.2 
	82.2 

	114.0 (17.9) 
	114.0 (17.9) 

	83.7 
	83.7 


	C2S4 
	C2S4 
	C2S4 

	# A 
	# A 

	137.5 (21.6) 
	137.5 (21.6) 

	131.8 (20.7) 
	131.8 (20.7) 

	93.5 
	93.5 

	131.4 (20.6) 
	131.4 (20.6) 

	95.6 
	95.6 


	TR
	# B 
	# B 

	132.4 (20.8) 
	132.4 (20.8) 

	93.3 
	93.3 

	132.2 (20.8) 
	132.2 (20.8) 

	96.1 
	96.1 


	C3S1 
	C3S1 
	C3S1 

	# A 
	# A 

	129.9 (20.4) 
	129.9 (20.4) 

	111.9 (17.6) 
	111.9 (17.6) 

	78.2 
	78.2 

	108.4 (17.0) 
	108.4 (17.0) 

	83.5 
	83.5 


	TR
	# B 
	# B 

	111.1 (17.4) 
	111.1 (17.4) 

	77.1 
	77.1 

	108.5 (17.0) 
	108.5 (17.0) 

	83.5 
	83.5 


	C3S2 
	C3S2 
	C3S2 

	# A 
	# A 

	137.5 (21.6) 
	137.5 (21.6) 

	131.1 (20.6) 
	131.1 (20.6) 

	90.4 
	90.4 

	132.2 (20.8) 
	132.2 (20.8) 

	96.1 
	96.1 


	TR
	# B 
	# B 

	133.4 (20.9) 
	133.4 (20.9) 

	91.3 
	91.3 

	127.5 (20.0) 
	127.5 (20.0) 

	92.7 
	92.7 


	C3S3 
	C3S3 
	C3S3 

	# A 
	# A 

	135.6 (21.3) 
	135.6 (21.3) 

	122.3 (19.2) 
	122.3 (19.2) 

	83.2 
	83.2 

	124.1 (19.5) 
	124.1 (19.5) 

	91.5 
	91.5 


	TR
	# B 
	# B 

	124.3 (19.5) 
	124.3 (19.5) 

	84.0 
	84.0 

	123.5 (19.4) 
	123.5 (19.4) 

	91.1 
	91.1 




	3.3 PREPARATION OF LABORATORY SAMPLES 
	Seven sets of laboratory samples were molded and prepared in the laboratory for freeze-thaw and wet-dry durability testing. In total, 28 samples were molded with four samples molded for each material combination: two for wet-dry and two for freeze-thaw durability testing. The material combinations are summarized in Table 3.2 along with the Optimum Moisture Content (OMC) and Maximum Dry Density (MDD), data from standard Proctor testing, and the molded wet densities. The OMC and MDD were targeted for the prep
	For C2S2, two sets of samples were prepared: one with the full gradation (C2S2_R) and the other with any FRCA material retained on the 3/4 in. (19 mm) sieve removed (C2S2_S). All samples were compacted in a standard Proctor mold (see 
	For C2S2, two sets of samples were prepared: one with the full gradation (C2S2_R) and the other with any FRCA material retained on the 3/4 in. (19 mm) sieve removed (C2S2_S). All samples were compacted in a standard Proctor mold (see 
	Figure 3.3
	Figure 3.3

	) with a 4 in. (102 mm) diameter and 4.6 in. (116 mm) height and were compacted at the standard Proctor compactive effort (energy). To preserve the shape of samples upon demolding, the standard Proctor mold was specially cut into a split mold, which was deemed necessary for keeping such non-cohesive weak samples intact for 

	curing and testing. The split mold setup for preparing the durability samples and one prepared sample with QB2 and cement are shown in 
	curing and testing. The split mold setup for preparing the durability samples and one prepared sample with QB2 and cement are shown in 
	Figure 3.4
	Figure 3.4

	. 

	 
	Figure
	Figure 3.3. Durability sample size and geometry: size of field-extracted samples (left) and the  lab mold used for preparing laboratory samples (right). 
	Figure 3.3. Durability sample size and geometry: size of field-extracted samples (left) and the  lab mold used for preparing laboratory samples (right). 
	Figure 3.3. Durability sample size and geometry: size of field-extracted samples (left) and the  lab mold used for preparing laboratory samples (right). 
	Figure 3.3. Durability sample size and geometry: size of field-extracted samples (left) and the  lab mold used for preparing laboratory samples (right). 
	Figure 3.3. Durability sample size and geometry: size of field-extracted samples (left) and the  lab mold used for preparing laboratory samples (right). 
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	Figure 3.4. Preparation of molded laboratory samples using a split mold. 
	Figure 3.4. Preparation of molded laboratory samples using a split mold. 
	Figure 3.4. Preparation of molded laboratory samples using a split mold. 




	 
	  
	Table 3.2. Material Combinations of Laboratory-molded Samples 
	Sample Name 
	Sample Name 
	Sample Name 
	Sample Name 
	Sample Name 

	Sample Description/Quarry  By-Product Durability Cylinders 
	Sample Description/Quarry  By-Product Durability Cylinders 

	Optimum Moisture (%) 
	Optimum Moisture (%) 

	Standard Dry Density  pcf (kN/m3) 
	Standard Dry Density  pcf (kN/m3) 

	Calculated Wet Density pcf (kN/m3) 
	Calculated Wet Density pcf (kN/m3) 

	Calculated Wet Weight Lbs. (g) 
	Calculated Wet Weight Lbs. (g) 



	C2S1 
	C2S1 
	C2S1 
	C2S1 

	Blend of 70% QB2 & 30% FRAP; stabilized with 3% Type I cement 
	Blend of 70% QB2 & 30% FRAP; stabilized with 3% Type I cement 

	8.0 
	8.0 

	135.0 (21.2) 
	135.0 (21.2) 

	145.8 (22.9) 
	145.8 (22.9) 

	4.86 (2206)  
	4.86 (2206)  


	C2S2-S 
	C2S2-S 
	C2S2-S 

	Blend of 70% QB2 & 30% FRCA by weight; stabilized with 3% Type I cement. Plus ¾ in. FRCA material not included in specimen (stripped) 
	Blend of 70% QB2 & 30% FRCA by weight; stabilized with 3% Type I cement. Plus ¾ in. FRCA material not included in specimen (stripped) 

	9.8 
	9.8 

	128.6 (20.2) 
	128.6 (20.2) 

	141.2 (22.2) 
	141.2 (22.2) 

	4.71 (2136)  
	4.71 (2136)  


	C2S2-R 
	C2S2-R 
	C2S2-R 

	Blend of 70% QB2 & 30% FRCA by weight; stabilized with 3% Type I cement. Plus ¾ in. FRCA material included in specimen (retained) 
	Blend of 70% QB2 & 30% FRCA by weight; stabilized with 3% Type I cement. Plus ¾ in. FRCA material included in specimen (retained) 

	9.4* 
	9.4* 

	130.1* (20.4) 
	130.1* (20.4) 

	142.3 (22.4) 
	142.3 (22.4) 

	4.75 (2153)  
	4.75 (2153)  


	C2S3 
	C2S3 
	C2S3 

	Blend of 70% QB2 & 30% FRAP by weight; stabilized with 10% Class C fly ash 
	Blend of 70% QB2 & 30% FRAP by weight; stabilized with 10% Class C fly ash 

	7.5 
	7.5 

	136.2 (21.4) 
	136.2 (21.4) 

	146.4 (23.0) 
	146.4 (23.0) 

	4.88 (2215)  
	4.88 (2215)  


	C2S4 
	C2S4 
	C2S4 

	Blend of QB2 and 3% Type I cement 
	Blend of QB2 and 3% Type I cement 

	9.1 
	9.1 

	137.5 (21.6) 
	137.5 (21.6) 

	150.0 (21.6) 
	150.0 (21.6) 

	5.00 (2269)  
	5.00 (2269)  


	C3S1 
	C3S1 
	C3S1 

	Blend of QB3 and 3% Type I cement 
	Blend of QB3 and 3% Type I cement 

	8.4 
	8.4 

	129.9 (20.4) 
	129.9 (20.4) 

	140.8 (22.1) 
	140.8 (22.1) 

	4.70 (2130)  
	4.70 (2130)  


	C3S3 
	C3S3 
	C3S3 

	Blend of QB2 and 10% Class C fly ash 
	Blend of QB2 and 10% Class C fly ash 

	8.0 
	8.0 

	135.6 (21.3) 
	135.6 (21.3) 

	146.4 (23.0) 
	146.4 (23.0) 

	4.89 (2216)  
	4.89 (2216)  


	* Moisture-density relationship for C2S2-R was performed on minus 3/4 in. (19 mm) material per specifications. Standard dry density and optimum moisture values were 128.6 pcf (20.2 kN/m3) at 9.8% moisture content. The values shown in the above table reflect coarse particle adjustment for 5.5% oversize particles (+ 3/4 in. or 19 mm). 
	* Moisture-density relationship for C2S2-R was performed on minus 3/4 in. (19 mm) material per specifications. Standard dry density and optimum moisture values were 128.6 pcf (20.2 kN/m3) at 9.8% moisture content. The values shown in the above table reflect coarse particle adjustment for 5.5% oversize particles (+ 3/4 in. or 19 mm). 
	* Moisture-density relationship for C2S2-R was performed on minus 3/4 in. (19 mm) material per specifications. Standard dry density and optimum moisture values were 128.6 pcf (20.2 kN/m3) at 9.8% moisture content. The values shown in the above table reflect coarse particle adjustment for 5.5% oversize particles (+ 3/4 in. or 19 mm). 




	3.4 CURING OF SAMPLES 
	Curing of samples was achieved by letting the laboratory-prepared samples stand in a moist room at ~100% relative humidity and room temperature of 70 ± 3°F (21 ± 2°C) for seven days. All samples were cured unsealed. Note that only the samples prepared in the laboratory for durability and Unconfined Compressive Strength (UCS) testing were cured in the moist room. The samples extracted from the field test sections were not further cured since they were constructed about three years prior to durability testing
	Curing of samples was achieved by letting the laboratory-prepared samples stand in a moist room at ~100% relative humidity and room temperature of 70 ± 3°F (21 ± 2°C) for seven days. All samples were cured unsealed. Note that only the samples prepared in the laboratory for durability and Unconfined Compressive Strength (UCS) testing were cured in the moist room. The samples extracted from the field test sections were not further cured since they were constructed about three years prior to durability testing
	Figure 3.5
	Figure 3.5

	 shows the curing of the 28 laboratory-molded durability samples for wet-dry and freeze-thaw durability testing in a moist room. Similarly, all prepared UCS samples were cured in a similar manner. The preparation, curing, and testing of UCS samples will be detailed later in this chapter. 

	 
	Figure
	Figure 3.5. Moist room curing of the laboratory-molded samples for  freeze-thaw and wet-dry durability testing. 
	3.5 TESTING OF WET-DRY DURABILITY SAMPLES 
	Testing of wet-dry durability samples was conducted according to the specifications and requirements of AASHTO T 135 standard “Standard Method of Test for Wetting-and-Drying Test of Compacted Soil-Cement Mixtures.” After each cycle of wetting and drying, measurements of moisture change, volume change, and soil-cement loss by a brushing method were taken. Note that method “A” specifies that 100% of the sample passes the #4 sieve (4.75 mm), which does not apply to all the tested samples. The standard method “
	In total, 14 laboratory-molded samples and 14 field-extracted samples were tested. These samples entail the seven material combinations for lab and field samples, with two replicates tested for each combination (referred to by replicates “A” and “B”). All wet-dry durability testing was conducted at IDOT CBM after molding and curing or extraction and saw-cutting at the University of Illinois. The laboratory-molded samples were tested first, followed by the field-extracted samples. 
	For the testing of the laboratory-molded samples, the original molded wet weight and molded moisture content were not fully tracked during the molding process. Since these two values are key 
	components in the calculation of soil-cement loss, and since all laboratory samples were compacted at the MDD and OMC, the specimen wet weights were back-calculated using the MDD and OMC values and then used for the calculation of the soil-cement loss. Note that for the purposes of this report, soil-cement loss is referred to soil-modifier loss in samples stabilized with cement or fly ash as the chemical modifier. The starting wet weight of a specimen is commonly lower than its molded wet weight due to mate
	Similarly, for the field-extracted samples, some assumptions needed to be made for estimating the moisture content at compaction and the “as-received” moisture contents. In order to calculate the “as-received” dry mass/density of each block sample, the initial moisture content needed to be calculated. The as-received moisture content was derived from the initial oven-drying period of the wet-dry durability. This value was adjusted upward to account for the water of hydration for all specimens stabilized wit
	Similarly, for the field-extracted samples, some assumptions needed to be made for estimating the moisture content at compaction and the “as-received” moisture contents. In order to calculate the “as-received” dry mass/density of each block sample, the initial moisture content needed to be calculated. The as-received moisture content was derived from the initial oven-drying period of the wet-dry durability. This value was adjusted upward to account for the water of hydration for all specimens stabilized wit
	Table 3.1
	Table 3.1

	. 

	For the determination of the percentage of soil-cement loss of the field and laboratory samples, the corrected oven-dry weight of the samples needed to be calculated. The correction assumed the water of hydration was equal to 1/4 of the percent cement in the specimen for the cement-stabilized samples, and zero for the fly ash stabilized ones. Accordingly, the soil-cement loss (%) was calculated using the following formula from the Portland Cement Association (PCA): 
	   𝑆𝑜𝑖𝑙 𝐶𝑒𝑚𝑒𝑛𝑡 𝑙𝑜𝑠𝑠 (%)=𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡−𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑜𝑣𝑒𝑛 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 𝑥 100%                   (3.1) 
	Note that the calculation of the percentage of soil-cement loss is intended after the completion of 12 cycles of wet-dry durability. The soil-cement loss, however, can be estimated after the completion of any cycle of durability provided that the specimen remains intact and the moisture content can be reasonably estimated. Further, the final corrected moisture content was computed for each specimen from the final recorded brushed weight and the corresponding corrected oven-dry weight. This includes the wate
	For the standard testing procedure of wet-dry durability with AASHTO T 135, the standard specifies that each Proctor-sized sample is brushed with eighteen to twenty vertical firm brush strokes using a wire scratch brush, such that each area of the sample along the longitudinal axis is brushed with two firm strokes. An additional four strokes are required on each end of the cylindrical specimen. This 
	procedure was followed closely for all laboratory-molded specimens. For the field specimen, on the other hand, and given the sample geometry and the size of the wire brush, each face of the block sample was brushed with four strokes, which ensured that all areas are brushed with two firm strokes, thus meeting the requirements of the AASHTO T 135 standard. Selected steps of wet-dry durability test illustrating the procedure and the sample conditions at certain cycles indicated are presented in 
	procedure was followed closely for all laboratory-molded specimens. For the field specimen, on the other hand, and given the sample geometry and the size of the wire brush, each face of the block sample was brushed with four strokes, which ensured that all areas are brushed with two firm strokes, thus meeting the requirements of the AASHTO T 135 standard. Selected steps of wet-dry durability test illustrating the procedure and the sample conditions at certain cycles indicated are presented in 
	Figure 3.6
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	. 
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	Wetting of lab samples 
	Wetting of lab samples 
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	Oven-drying of lab samples 
	Oven-drying of lab samples 
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	Cycle 1 
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	Cycle 7 
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	Cycle 12 


	Testing of laboratory-molded samples for wet-dry durability 
	Testing of laboratory-molded samples for wet-dry durability 
	Testing of laboratory-molded samples for wet-dry durability 
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	Testing of field-extracted samples for wet-dry durability 
	Testing of field-extracted samples for wet-dry durability 
	Testing of field-extracted samples for wet-dry durability 




	Figure 3.6. Testing of lab and field samples for wet-dry durability at IDOT CBM.  
	3.6 TESTING OF FREEZE-THAW DURABILITY SAMPLES 
	Testing of freeze-thaw durability samples was conducted according to the specifications and requirements of the AASHTO T 136 standard “Standard Method of Test for Freezing-and-Thawing Tests of Compacted Soil-Cement Mixtures.” Like AASHTO T 135 for wet-dry durability, this standard involves using a brushing method to determine the percentage of soil-cement loss, moisture changes, and volume changes produced after each cycle of freezing and thawing. The standard method “B” was also used. The testing procedure
	In total, 14 laboratory-molded samples and 14 field-extracted samples were tested for freeze-thaw durability. Two replicates were tested for each material combination (referred to by replicates “A” and “B”). All freeze-thaw durability testing was conducted at IDOT CBM after preparation (and curing) at the University of Illinois. For the testing of both laboratory-molded samples and field-extracted samples, the same assumptions and calculations that were undertaken for the wet-dry samples also apply for the 
	In total, 14 laboratory-molded samples and 14 field-extracted samples were tested for freeze-thaw durability. Two replicates were tested for each material combination (referred to by replicates “A” and “B”). All freeze-thaw durability testing was conducted at IDOT CBM after preparation (and curing) at the University of Illinois. For the testing of both laboratory-molded samples and field-extracted samples, the same assumptions and calculations that were undertaken for the wet-dry samples also apply for the 
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	. 

	One issue with the testing of freeze-thaw samples was that the calculation of the soil-cement loss is accurate for specimens that remain reasonably intact and is intended to be computed after the completion of 12 cycles of freezing and thawing as per AASHTO T 136. Errors are introduced into the soil-cement loss calculations for specimens that experience excessive deterioration and/or unaccountable material loss during testing. For samples that did not complete 12 cycles of testing because of excessive sampl
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	Testing of field-extracted samples for freeze-thaw durability 
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	Testing of field-extracted samples for freeze-thaw durability 




	Figure 3.7. Testing of laboratory and field samples for freeze-thaw durability at IDOT CBM. 
	3.7 TESTING OF UNCONFINED COMPRESSIVE STRENGTH SAMPLES 
	In addition to preparing samples for durability testing, samples were also prepared to test for the seven-day Unconfined Compressive Strength (UCS). The samples were compacted in a 4 in. (102 mm) 
	diameter and 8 in. (203 mm) tall cylindrical mold in four lifts. The compaction method utilized was as per the recommendations of ASTM C1435/ C1435M “Standard Practice for Molding Roller-Compacted Concrete in Cylinder Molds Using a Vibrating Hammer.” Four cylinders were prepared for each of the six material combinations investigated in the field study (i.e. C2S1–C2S4, C3S1, and C3S3). Note that for the seventh test section (C3S2) the material combination in the subbase was essentially the same as that in th
	diameter and 8 in. (203 mm) tall cylindrical mold in four lifts. The compaction method utilized was as per the recommendations of ASTM C1435/ C1435M “Standard Practice for Molding Roller-Compacted Concrete in Cylinder Molds Using a Vibrating Hammer.” Four cylinders were prepared for each of the six material combinations investigated in the field study (i.e. C2S1–C2S4, C3S1, and C3S3). Note that for the seventh test section (C3S2) the material combination in the subbase was essentially the same as that in th
	Figure 3.8
	Figure 3.8

	 illustrates some of the steps involved in the preparation, curing, capping, and testing of the UCS samples.  
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	Figure 3.8. Preparation, curing, and testing of unconfined compressive strength samples. 
	  
	CHAPTER 4: RESULTS AND INTERPRETATIONS 
	4.1 INTRODUCTION 
	This chapter presents the results for wet-dry and freeze-thaw durability for samples molded in the laboratory and samples extracted from the field test sections studying sustainable QB applications. Details for sample preparation and testing, along with any assumptions, were discussed in detail in the previous chapter. First, the results and interpretations for the wet-dry durability testing are given, followed by the results and interpretations for freeze-thaw durability and unconfined compressive strength
	4.2 RESULTS FOR WET-DRY DURABILITY 
	Table 4.1 and 
	Table 4.1 and 
	Figure 4.1
	Figure 4.1

	 summarize the results of the wet-dry durability testing for the laboratory-prepared specimens. Detailed information about the test results of each sample is given in Table 4.3 in the notes section. All laboratory samples survived the 12 cycles of wet-dry durability testing. IDOT Standard Specifications for Road and Bridge Construction specifies that the loss in weight/mass shall be less than 10% after 12 cycles of wetting and drying (IDOT, 2016). For the laboratory samples, the only sample to exceed 10% so

	The full suite of wet-dry durability data for lab samples are presented in Appendix A, which also provides measurements of the final corrected moisture content of the samples after 12 cycles of testing. The final moisture content was corrected to account for the water of hydration of cement for all samples stabilized with cement. No correction was applied to fly ash–stabilized specimens due to lack of knowledge and literature on the water of hydration for fly ash. Note that the corrected final moisture cont
	  
	Table 4.1. Summary of Test Results for Wet-Dry Durability of Laboratory-molded Samples 
	Sample Name 
	Sample Name 
	Sample Name 
	Sample Name 
	Sample Name 

	Specimen 
	Specimen 

	As Received 
	As Received 
	Weight 
	Lbs. (g) 

	No. of Cycles 
	No. of Cycles 
	Completed 

	Wet-Dry Soil-Cement Loss (%) 
	Wet-Dry Soil-Cement Loss (%) 

	Average  
	Average  
	Wet-Dry Soil-Cement Loss (%) 



	C2S1 
	C2S1 
	C2S1 
	C2S1 

	# A 
	# A 

	4.81 (2181) 
	4.81 (2181) 

	12 
	12 

	6.75% 
	6.75% 

	6.02% 
	6.02% 


	TR
	# B 
	# B 

	4.87 (2208) 
	4.87 (2208) 

	12 
	12 

	5.28% 
	5.28% 


	C2S2-S+ 
	C2S2-S+ 
	C2S2-S+ 

	# A 
	# A 

	4.60 (2087) 
	4.60 (2087) 

	12 
	12 

	12.03% 
	12.03% 

	9.58% 
	9.58% 


	TR
	# B 
	# B 

	4.72 (2141) 
	4.72 (2141) 

	12 
	12 

	7.13% 
	7.13% 


	C2S2-R+ 
	C2S2-R+ 
	C2S2-R+ 

	# A 
	# A 

	4.72 (2143) 
	4.72 (2143) 

	12 
	12 

	7.52% 
	7.52% 

	7.68% 
	7.68% 


	TR
	# B 
	# B 

	4.74 (2151) 
	4.74 (2151) 

	12 
	12 

	7.83% 
	7.83% 


	C2S3 
	C2S3 
	C2S3 

	# A 
	# A 

	4.86 (2206) 
	4.86 (2206) 

	12 
	12 

	7.09% 
	7.09% 

	7.24% 
	7.24% 


	TR
	# B 
	# B 

	4.85 (2202) 
	4.85 (2202) 

	12 
	12 

	7.38% 
	7.38% 


	C2S4 
	C2S4 
	C2S4 

	# A 
	# A 

	4.79 (2173) 
	4.79 (2173) 

	12 
	12 

	9.66% 
	9.66% 

	9.83% 
	9.83% 


	TR
	# B 
	# B 

	4.76 (2159) 
	4.76 (2159) 

	12 
	12 

	10.00% 
	10.00% 


	C3S1 
	C3S1 
	C3S1 

	# A 
	# A 

	4.78 (2170) 
	4.78 (2170) 

	12 
	12 

	3.45% 
	3.45% 

	3.58% 
	3.58% 


	TR
	# B 
	# B 

	4.81 (2184) 
	4.81 (2184) 

	12 
	12 

	3.72% 
	3.72% 


	C3S3 
	C3S3 
	C3S3 

	# A 
	# A 

	4.86 (2204) 
	4.86 (2204) 

	12 
	12 

	5.60% 
	5.60% 

	5.40% 
	5.40% 


	TR
	# B 
	# B 

	4.87 (2207) 
	4.87 (2207) 

	12 
	12 

	5.21% 
	5.21% 


	+ For C2S2, ‘S’ indicates stripped samples were FRCA particles larger than 3/4 in. (19 mm) were removed; ‘R’ indicates regular gradation, i.e. using the as-received material gradation for the FRCA material 
	+ For C2S2, ‘S’ indicates stripped samples were FRCA particles larger than 3/4 in. (19 mm) were removed; ‘R’ indicates regular gradation, i.e. using the as-received material gradation for the FRCA material 
	+ For C2S2, ‘S’ indicates stripped samples were FRCA particles larger than 3/4 in. (19 mm) were removed; ‘R’ indicates regular gradation, i.e. using the as-received material gradation for the FRCA material 
	Note: No unusual behavior was observed for any of the tested samples 
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	Figure 4.1. Estimated soil-cement loss for wet-dry durability testing of lab-molded samples. 
	Table 4.2
	Table 4.2
	Table 4.2

	 and 
	Figure 4.2
	Figure 4.2

	 summarize the results of the wet-dry durability testing for the field-extracted specimens. All samples extracted from the field test sections survived the 12 cycles of wet-dry durability testing. Samples with cement-stabilized QB2 or QB2 blended with FRAP/FRCA had significantly low soil-cement loss and slow rates of deterioration. All samples with QB2, namely C2S1, C2S2, C2S4, and C3S2, had less than 2% soil-cement loss after 12 cycles of wet-dry durability. On the other hand, C3S1 with cement-stabilized Q
	Table 3.1
	Table 3.1

	 for all field samples. Nevertheless, all cement-stabilized QB materials or QB blends with FRAP/FRCA pass the IDOT requirement of accumulating less than 10% soil-cement loss after 10 cycles of wetting and drying. 

	On the other hand, C2S3 and C3S3 samples with fly ash–stabilized QB2/FRAP and fly ash–stabilized QB2, respectively, had significantly higher soil-cement losses and rates of deterioration. Cement proves to be superior to Class C fly ash for long-term durability. Field samples with fly ash had a relatively high soil-cement loss ranging between 17.7% and 19.4%, which is significantly higher than what is permitted by IDOT and what was calculated for laboratory-molded samples stabilized with fly ash. Also note t
	On the other hand, C2S3 and C3S3 samples with fly ash–stabilized QB2/FRAP and fly ash–stabilized QB2, respectively, had significantly higher soil-cement losses and rates of deterioration. Cement proves to be superior to Class C fly ash for long-term durability. Field samples with fly ash had a relatively high soil-cement loss ranging between 17.7% and 19.4%, which is significantly higher than what is permitted by IDOT and what was calculated for laboratory-molded samples stabilized with fly ash. Also note t
	Table 3.1
	Table 3.1

	). 

	Table 4.2. Summary of Test Results for Wet-Dry Durability of Field-extracted Samples 
	Sample Name 
	Sample Name 
	Sample Name 
	Sample Name 
	Sample Name 

	Spec. 
	Spec. 

	As Received 
	As Received 
	Weight 
	Lbs. (g) 

	As Received 
	As Received 
	Density 
	pcf (kN/m3) 

	As Received 
	As Received 
	Moisture 
	(%) 

	No. of Cycles 
	No. of Cycles 
	Completed 

	Wet-Dry Soil-Cement Loss (%) 
	Wet-Dry Soil-Cement Loss (%) 

	Average 
	Average 
	Wet-Dry Soil-Cement Loss (%) 



	C2S1 
	C2S1 
	C2S1 
	C2S1 

	# A 
	# A 

	3.07 (1393) 
	3.07 (1393) 

	120.3 (18.9) 
	120.3 (18.9) 

	1.84 
	1.84 

	12 
	12 

	1.51 
	1.51 

	1.51 
	1.51 


	TR
	# B 
	# B 

	3.12 (1415) 
	3.12 (1415) 

	118.5 (18.6) 
	118.5 (18.6) 

	2.91 
	2.91 

	12 
	12 

	1.51 
	1.51 


	C2S2 
	C2S2 
	C2S2 

	# A 
	# A 

	3.02 (1369) 
	3.02 (1369) 

	121.6 (19.1) 
	121.6 (19.1) 

	2.16 
	2.16 

	12 
	12 

	1.34 
	1.34 

	1.02 
	1.02 


	TR
	# B 
	# B 

	3.17 (1437) 
	3.17 (1437) 

	126.9 (19.9) 
	126.9 (19.9) 

	2.16 
	2.16 

	12 
	12 

	0.69 
	0.69 


	C2S3 
	C2S3 
	C2S3 

	# A 
	# A 

	3.16 (1432) 
	3.16 (1432) 

	112.4 (17.7) 
	112.4 (17.7) 

	0.56 
	0.56 

	12 
	12 

	19.09 
	19.09 

	17.58 
	17.58 


	TR
	# B 
	# B 

	2.96 (1342) 
	2.96 (1342) 

	115.8 (18.2) 
	115.8 (18.2) 

	0.68 
	0.68 

	12 
	12 

	16.07 
	16.07 


	C2S4 
	C2S4 
	C2S4 

	# A 
	# A 

	3.16 (1433) 
	3.16 (1433) 

	133.5 (21.0) 
	133.5 (21.0) 

	1.31 
	1.31 

	12 
	12 

	0.48 
	0.48 

	0.46 
	0.46 


	TR
	# B 
	# B 

	3.08 (1398) 
	3.08 (1398) 

	134.6 (21.1) 
	134.6 (21.1) 

	1.62 
	1.62 

	12 
	12 

	0.44 
	0.44 


	C3S1 
	C3S1 
	C3S1 

	# A 
	# A 

	2.81 (1274) 
	2.81 (1274) 

	113.6 (17.9) 
	113.6 (17.9) 

	1.54 
	1.54 

	12 
	12 

	4.30 
	4.30 

	4.50 
	4.50 


	TR
	# B 
	# B 

	2.72 (1236) 
	2.72 (1236) 

	112.8 (17.7) 
	112.8 (17.7) 

	1.57 
	1.57 

	12 
	12 

	4.69 
	4.69 


	C3S2 
	C3S2 
	C3S2 

	# A 
	# A 

	3.44 (1562) 
	3.44 (1562) 

	133.5 (21.0) 
	133.5 (21.0) 

	1.85 
	1.85 

	12 
	12 

	1.45 
	1.45 

	1.54 
	1.54 


	TR
	# B 
	# B 

	3.24 (1469) 
	3.24 (1469) 

	136.2 (21.4) 
	136.2 (21.4) 

	2.13 
	2.13 

	12 
	12 

	1.63 
	1.63 


	C3S3 
	C3S3 
	C3S3 

	# A 
	# A 

	3.01 (1365) 
	3.01 (1365) 

	123.0 (19.3) 
	123.0 (19.3) 

	0.59 
	0.59 

	12 
	12 

	19.43 
	19.43 

	18.55 
	18.55 


	TR
	# B 
	# B 

	3.21 (1455) 
	3.21 (1455) 

	125.0 (19.6) 
	125.0 (19.6) 

	0.55 
	0.55 

	12 
	12 

	17.67 
	17.67 


	Note: No unusual behavior was observed for any of the tested samples. 
	Note: No unusual behavior was observed for any of the tested samples. 
	Note: No unusual behavior was observed for any of the tested samples. 




	 
	Figure
	Figure 4.2. Estimated soil-cement loss for wet-dry durability testing of field-extracted samples. 
	The field test sections for project ICT-R27-168, which studied sustainable field applications of QB, were constructed in the summer of 2016. This means that samples for durability testing, which were extracted in the spring of 2019, were exposed to several cycles of wetting and drying / freezing and thawing in the field prior to the 12 cycles of wet-dry durability testing. This fact might explain the variability in the results of wet-dry durability between the lab and field samples, where the laboratory-mol
	Another explanation for the significant variability in performance of the fly ash–stabilized materials between the laboratory and field samples is the composition of the fly ash. The fly ash used in the preparation of the laboratory-molded samples was obtained from the same source (vendor) as the one used in the construction of the field test sections. However, being a by-product material of coal combustion, the properties and composition of the Class C fly ash can vary greatly from batch to batch. More inv
	4.3 RESULTS FOR FREEZE-THAW DURABILITY 
	Table 4.3
	Table 4.3
	Table 4.3

	 and 
	Figure 4.3
	Figure 4.3

	 summarize the results of the freeze-thaw durability testing for the laboratory-prepared specimens. Detailed information about the performance of each sample is given in 
	Table 4.3
	Table 4.3

	 along with the number of cycles completed before the sample fell apart (for the samples that did not complete 12 cycles of freeze-thaw testing). Note that the freeze-thaw soil-cement loss for each specimen and the average soil-cement loss given in 
	Table 4.3
	Table 4.3

	 represent soil-cement losses after 12 cycles of testing. For those samples that deteriorated/fell apart before completing 12 cycles of testing, these reported values were obtained by extrapolating the data from 12 cycles by fitting the data with the best-fit polynomial. Both samples for C2S1, C2S2_R, and C2S3 with cement-stabilized QB2/FRAP, cement-stabilized QB2/FRCA, and fly ash–stabilized QB2/FRAP, respectively, did not complete 12 cycles of testing, mainly due to layer separation.  

	C2S1 and C2S2_R materials were used to construct the two field test sections that had superior performance trends and low levels of surface rut accumulation in the accelerated pavement study for project ICT-R27-168 (Qamhia et al., 2018; Qamhia et al., 2019). As observed in 
	C2S1 and C2S2_R materials were used to construct the two field test sections that had superior performance trends and low levels of surface rut accumulation in the accelerated pavement study for project ICT-R27-168 (Qamhia et al., 2018; Qamhia et al., 2019). As observed in 
	Table 4.3
	Table 4.3

	 and 
	Figure 4.3
	Figure 4.3

	, the seven days of curing was not sufficient to achieve enough bonding and cementation between the coarse aggregates and the QB materials, which led to rapid deterioration and layer separation upon brushing. Note that freeze-thaw testing is a harsher test when compared to the wet-dry durability testing. It is generally observed that all laboratory-molded samples had significantly higher soil-cement loss in freeze-thaw durability testing when compared to wet-dry testing and that all samples exceeded the 10%

	Also note that for some sample sets (e.g. C2S3 and C2S4), one sample was eliminated from the average soil-cement loss reported for these materials due to variable performance between the two samples and the observations of sample performance upon testing at IDOT CBM. The eliminated samples were not graphed in 
	Also note that for some sample sets (e.g. C2S3 and C2S4), one sample was eliminated from the average soil-cement loss reported for these materials due to variable performance between the two samples and the observations of sample performance upon testing at IDOT CBM. The eliminated samples were not graphed in 
	Figure 4.3
	Figure 4.3

	, but the full suite of data, including any extrapolation, are presented in Appendix B. Finally, QB2 samples stabilized with Class C fly ash, namely C2S3 and C3S3, had significantly lower soil-cement loss and lower rate of deterioration when compared to cement-stabilized samples. This can indicate higher freeze-thaw durability of fly ash–stabilized samples at early stages after seven days of curing. 

	On the other hand, different trends for freeze-thaw durability can be seen for the long-term cured samples extracted from the field test sections, which are given in 
	On the other hand, different trends for freeze-thaw durability can be seen for the long-term cured samples extracted from the field test sections, which are given in 
	Figure 4.4
	Figure 4.4

	 and 
	Table 4.4
	Table 4.4

	. All cement-stabilized samples with QB2 or QB2 blended with coarse-recycled aggregates (FRAP or FRCA) survived 12 cycles of testing and accumulated significantly lower soil-cement losses than the QB2 samples stabilized with fly ash and the cement-stabilized QB3 samples. Note that specimen A for C2S2 with cement-stabilized QB2 and FRCA was eliminated from the average soil-cement loss since it had a low dry density (relative dry density of specimen A was 90.8% while that of specimen B was 99.0%). Similarly, 

	trends. The freeze-thaw durability results for the field-extracted samples indicate that the type of stabilizer and the chemical composition of the QB material, which constitute 70%–100% of the aggregate materials in the sample, have significant effects on the durability of QB applications, particularly when long-term durability is considered. The full suite of data is presented in Appendix B.  
	Table 4.3. Summary of Test Results for Freeze-Thaw Durability of Laboratory-molded Samples 
	Sample Name 
	Sample Name 
	Sample Name 
	Sample Name 
	Sample Name 

	Specimen 
	Specimen 

	As Received Weight  
	As Received Weight  
	Lbs. (g) 

	No. of Cycles Completed 
	No. of Cycles Completed 

	Freeze-Thaw Soil-Cement Loss (%) 
	Freeze-Thaw Soil-Cement Loss (%) 

	Average Soil-Cement Loss (%) 
	Average Soil-Cement Loss (%) 

	Notes 
	Notes 



	C2S1 
	C2S1 
	C2S1 
	C2S1 

	# A 
	# A 

	4.96 (2252) 
	4.96 (2252) 

	8 
	8 

	62%* 
	62%* 

	66.5% 
	66.5% 

	Rapid deterioration—cycle #5. Layer separation—cycle #6.  Done after cycle #8 
	Rapid deterioration—cycle #5. Layer separation—cycle #6.  Done after cycle #8 


	TR
	# B 
	# B 

	4.85 (2199) 
	4.85 (2199) 

	9 
	9 

	71%* 
	71%* 

	Rapid deterioration—cycle #5. Done after cycle #9 
	Rapid deterioration—cycle #5. Done after cycle #9 


	C2S2-S 
	C2S2-S 
	C2S2-S 

	# A 
	# A 

	4.65 (2111) 
	4.65 (2111) 

	11 
	11 

	28%* 
	28%* 

	22.8% 
	22.8% 

	Rapid deterioration—cycle #8.  Falls apart during cycle #12 
	Rapid deterioration—cycle #8.  Falls apart during cycle #12 


	TR
	# B 
	# B 

	4.70 (2133) 
	4.70 (2133) 

	12 
	12 

	17.58% 
	17.58% 

	Rapid deterioration—cycle #10 
	Rapid deterioration—cycle #10 


	C2S2-R 
	C2S2-R 
	C2S2-R 

	# A 
	# A 

	4.74 (2149) 
	4.74 (2149) 

	6 
	6 

	78%* 
	78%* 

	79.0% 
	79.0% 

	Rapid deterioration—cycle #4. Layer separated & fell apart after cycle #6 
	Rapid deterioration—cycle #4. Layer separated & fell apart after cycle #6 


	TR
	# B 
	# B 

	4.70 (2130) 
	4.70 (2130) 

	8 
	8 

	80%* 
	80%* 

	Rapid deterioration—cycle #4.  Falls apart after cycle #8 
	Rapid deterioration—cycle #4.  Falls apart after cycle #8 


	C2S3 
	C2S3 
	C2S3 

	# A 
	# A 

	4.94 (2240) 
	4.94 (2240) 

	10 
	10 

	90%* 
	90%* 

	Use 
	Use 
	13%** 

	Layer separation—cycle #6.  Rapid deterioration—cycle #6.  Falls apart—cycle #10 
	Layer separation—cycle #6.  Rapid deterioration—cycle #6.  Falls apart—cycle #10 


	TR
	# B 
	# B 

	4.92 (2233) 
	4.92 (2233) 

	10 
	10 

	13%* 
	13%* 

	Rapid deterioration—cycle #8. Layers separated & fell apart during cycle #11 
	Rapid deterioration—cycle #8. Layers separated & fell apart during cycle #11 


	C2S4 
	C2S4 
	C2S4 

	# A 
	# A 

	4.80 (2175) 
	4.80 (2175) 

	12 
	12 

	41.25% 
	41.25% 

	Use 
	Use 
	41.2%*** 

	Rapid deterioration—cycle #8  
	Rapid deterioration—cycle #8  


	TR
	# B 
	# B 

	4.74 (2151) 
	4.74 (2151) 

	6 
	6 

	65%* 
	65%* 

	Rapid deterioration—cycle #5. Layers separated & fell apart after cycle #6 
	Rapid deterioration—cycle #5. Layers separated & fell apart after cycle #6 


	C3S1 
	C3S1 
	C3S1 

	# A 
	# A 

	4.68 (2123) 
	4.68 (2123) 

	12 
	12 

	58.22% 
	58.22% 

	50.13% 
	50.13% 

	Rapid deterioration—cycle #6 
	Rapid deterioration—cycle #6 


	TR
	# B 
	# B 

	4.71 (2138) 
	4.71 (2138) 

	12 
	12 

	42.04% 
	42.04% 

	Rapid deterioration—cycle #8 
	Rapid deterioration—cycle #8 


	C3S3 
	C3S3 
	C3S3 

	# A 
	# A 

	4.81 (2180) 
	4.81 (2180) 

	12 
	12 

	13.55 
	13.55 

	12.86% 
	12.86% 

	Rapid deterioration—cycle #10 
	Rapid deterioration—cycle #10 


	TR
	# B 
	# B 

	4.77 (2163) 
	4.77 (2163) 

	12 
	12 

	12.18 
	12.18 

	Rapid deterioration—cycle #10 
	Rapid deterioration—cycle #10 


	* Estimated soil-cement loss extrapolated from 12 cycles. 
	* Estimated soil-cement loss extrapolated from 12 cycles. 
	* Estimated soil-cement loss extrapolated from 12 cycles. 
	** Use 13% loss as an average estimate from specimen B (C2S3 blend). Has similar percentage of loss as fly ash blend in C3S3. Specimen A should be disregarded as it quickly deteriorated when layers began to separate. 
	*** Use 41.2% loss as an average from specimen A C2S4 blend. Specimen A completed 12 cycles. 




	 
	Figure
	Figure 4.3. Estimated soil-cement loss for freeze-thaw durability testing of lab-molded samples. 
	 
	 
	Figure
	Figure 4.4. Estimated soil-cement loss for freeze-thaw durability testing of field-extracted samples. 
	 
	Table 4.4. Summary of Test Results for Freeze-Thaw Durability of Field-extracted Samples 
	Sample Name 
	Sample Name 
	Sample Name 
	Sample Name 
	Sample Name 

	Spec. 
	Spec. 

	As Received 
	As Received 
	Weight 
	Lbs. (g) 

	As- Received 
	As- Received 
	Density pcf (kN/m3) 

	As Received 
	As Received 
	Moisture 
	(%)*** 

	No. of Cycles 
	No. of Cycles 
	Completed 

	Freeze-Thaw Soil-Cement Loss (%) 
	Freeze-Thaw Soil-Cement Loss (%) 

	Avg. 
	Avg. 
	Soil-Cement Loss (%) 

	Notes 
	Notes 



	C2S1 
	C2S1 
	C2S1 
	C2S1 

	# A 
	# A 

	2.9 (1337) 
	2.9 (1337) 

	120.1 (18.9) 
	120.1 (18.9) 

	1.84 
	1.84 

	12 
	12 

	23.12 
	23.12 

	19.76 
	19.76 

	 
	 


	TR
	# B 
	# B 

	3.0 (1369) 
	3.0 (1369) 

	123.6 (19.4) 
	123.6 (19.4) 

	1.84 
	1.84 

	12 
	12 

	16.40 
	16.40 

	 
	 


	C2S2 
	C2S2 
	C2S2 

	# A 
	# A 

	3.1 (1400) 
	3.1 (1400) 

	119.3 (18.7) 
	119.3 (18.7) 

	2.16 
	2.16 

	12 
	12 

	33.26 
	33.26 

	Use 
	Use 
	3.57** 

	 
	 


	TR
	# B 
	# B 

	3.2 (1444) 
	3.2 (1444) 

	130.0 (20.4) 
	130.0 (20.4) 

	2.16 
	2.16 

	12 
	12 

	3.57 
	3.57 

	 
	 


	C2S3 
	C2S3 
	C2S3 

	# A 
	# A 

	2.9 (1323) 
	2.9 (1323) 

	114.5 (18.0) 
	114.5 (18.0) 

	0.62 
	0.62 

	3 
	3 

	100 / 10 cycles 
	100 / 10 cycles 

	100 
	100 

	Rapid deterioration cycle 2. Large crack cycle 3. Falls apart cycle 4 
	Rapid deterioration cycle 2. Large crack cycle 3. Falls apart cycle 4 


	TR
	# B 
	# B 

	2.9 (1303) 
	2.9 (1303) 

	114.7 (18.0) 
	114.7 (18.0) 

	0.62 
	0.62 

	3 
	3 

	100 / 8 cycles 
	100 / 8 cycles 

	Rapid deterioration cycle 2. Lay on side—cycle 3. Falls apart cycle 4 
	Rapid deterioration cycle 2. Lay on side—cycle 3. Falls apart cycle 4 


	C2S4 
	C2S4 
	C2S4 

	# A 
	# A 

	2.9 (1333) 
	2.9 (1333) 

	133.3 (20,9) 
	133.3 (20,9) 

	1.46 
	1.46 

	12 
	12 

	13.01 
	13.01 

	12.70 
	12.70 

	 
	 


	TR
	# B 
	# B 

	3.1 (1409) 
	3.1 (1409) 

	134.1 (21.1) 
	134.1 (21.1) 

	1.46 
	1.46 

	12 
	12 

	12.38 
	12.38 

	 
	 


	C3S1 
	C3S1 
	C3S1 

	# A 
	# A 

	2.7 (1205) 
	2.7 (1205) 

	110.1 (17.3) 
	110.1 (17.3) 

	1.55 
	1.55 

	7 
	7 

	100 / 9 cycles 
	100 / 9 cycles 

	100 
	100 

	Rapid deterioration cycle 3. Lay on side—cycle 6. Falls apart cycle 8 
	Rapid deterioration cycle 3. Lay on side—cycle 6. Falls apart cycle 8 


	TR
	# B 
	# B 

	2.8 (1291) 
	2.8 (1291) 

	110.2 (17.3) 
	110.2 (17.3) 

	1.55 
	1.55 

	8 
	8 

	100 / 10 cycles 
	100 / 10 cycles 

	Rapid deterioration cycle 3. Lay on side—cycle 6. Falls apart cycle 9 
	Rapid deterioration cycle 3. Lay on side—cycle 6. Falls apart cycle 9 


	C3S2 
	C3S2 
	C3S2 

	# A 
	# A 

	3.3 (1502) 
	3.3 (1502) 

	134.8 (21.2) 
	134.8 (21.2) 

	1.99 
	1.99 

	12 
	12 

	5.32 
	5.32 

	7.13 
	7.13 

	 
	 


	TR
	# B 
	# B 

	3.3 (1487) 
	3.3 (1487) 

	130.0 (20.4) 
	130.0 (20.4) 

	1.99 
	1.99 

	12 
	12 

	8.94 
	8.94 

	 
	 


	C3S3 
	C3S3 
	C3S3 

	# A 
	# A 

	3.0 (1362) 
	3.0 (1362) 

	124.8 (19.6) 
	124.8 (19.6) 

	0.57 
	0.57 

	10 
	10 

	70* 
	70* 

	72 
	72 

	Large loss after cycle 4. Lay on side—cycle 9. Terminate after cycle 10 
	Large loss after cycle 4. Lay on side—cycle 9. Terminate after cycle 10 


	TR
	# B 
	# B 

	3.0 (1345) 
	3.0 (1345) 

	124.2 (19.5) 
	124.2 (19.5) 

	0.57 
	0.57 

	10 
	10 

	73* 
	73* 

	Large loss after cycle 4. Terminate after cycle 10 
	Large loss after cycle 4. Terminate after cycle 10 


	* Estimated soil-cement loss extrapolated from 12 cycles. 
	* Estimated soil-cement loss extrapolated from 12 cycles. 
	* Estimated soil-cement loss extrapolated from 12 cycles. 
	** Use 3.57% loss as an average estimate from specimen B of C2S2 blend. Specimen A has low dry density.  
	*** As-received moisture taken as average from corresponding wet-dry specimens. 




	4.4 RESULTS FOR UNCONFINED COMPRESSIVE STRENGTH 
	Unconfined Compressive Strength (UCS) tests were carried out at ICT concurrently with durability testing. Both tests were conducted to ascertain that both durability and strength requirements were investigated for QB pavement applications and checked against IDOT requirements and specifications. In addition, UCS tests helped to evaluate effects of possible material variability between the newly molded laboratory samples and the materials that were previously used to construct the test sections for project I
	Figure 4.5
	Figure 4.5
	Figure 4.5

	 shows the UCS test results for all material combinations evaluated in the field test sections. In addition, laboratory UCS results conducted prior to the construction of the field test sections in 2016 are also presented in 
	Figure 4.5
	Figure 4.5

	. The error bars represent one standard deviation from the mean UCS. Based on the mean UCS and standard deviation values, there are no statistical differences in the UCS between the current results and the previous results in ICT-R27-168 for all QB applications except for the C3S3 section having fly ash–stabilized QB2 materials. For C3S3, the newly tested samples have statistically higher UCS, which is on average ~100 psi (690 kPa) higher than the UCS values of the previously tested samples before the const

	Note that the average seven-day UCS of all tested samples in the current study ranged between 310 and 430 psi (2,137–2,965 kPa). The IDOT Standard Specifications for Road and Bridge Construction specifies a minimum seven-day compressive strength of 500 psi (3,447 kPa) for chemically treated subsurface materials (IDOT, 2016). However, based on the results of testing cube samples extracted from ICT-R27-168 field test sections, all samples with QB2 or QB2 blended with recycled coarse aggregates and stabilized 
	Note that the average seven-day UCS of all tested samples in the current study ranged between 310 and 430 psi (2,137–2,965 kPa). The IDOT Standard Specifications for Road and Bridge Construction specifies a minimum seven-day compressive strength of 500 psi (3,447 kPa) for chemically treated subsurface materials (IDOT, 2016). However, based on the results of testing cube samples extracted from ICT-R27-168 field test sections, all samples with QB2 or QB2 blended with recycled coarse aggregates and stabilized 
	Figure 4.6
	Figure 4.6

	. These results were also presented in the final report of ICT-R27-168 (Qamhia et al., 2018). Note that both fly ash–stabilized test sections, i.e. C2S3 and C3S3, and the cement-stabilized QB3 material, i.e. C3S1, had significantly lower cube strengths. It is generally agreed that concrete cube strengths are 18–30% higher than cylinders having a 2:1 aspect ratio of height to diameter (Townsend et al., 1977; Kumavat and Patel, 2014; Qamhia et al., 2018).  

	 
	Figure
	Figure 4.5. Unconfined compressive strength results of the investigated QB applications. 
	 
	 
	Figure
	Figure 4.6. Unconfined compressive strength results of cube samples extracted from  ICT-R27-168 field test sections (Qamhia et al., 2018). 
	4.5 INTERPRETATIONS OF DURABILITY RESULTS 
	Figure 4.7
	Figure 4.7
	Figure 4.7

	 and 
	Figure 4.8
	Figure 4.8

	 present the soil-cement losses at the end of durability testing, i.e. after 12 cycles, for wet-dry durability and freeze-thaw durability, respectively. The data for the laboratory-molded samples and field-extracted samples are graphed side-by-side for comparing the long- and short-term durability results of each material combination. Note that in both figures laboratory samples for C2S2_S with the 3/4 in. (19 mm) FRCA material removed are not shown since there is not an equivalent field test section constr

	• The type, i.e. origin and chemical composition, of the quarry by-product material can have a significant impact on the wet-dry and freeze-thaw durability, particularly when long-term durability is considered. 
	• The type, i.e. origin and chemical composition, of the quarry by-product material can have a significant impact on the wet-dry and freeze-thaw durability, particularly when long-term durability is considered. 
	• The type, i.e. origin and chemical composition, of the quarry by-product material can have a significant impact on the wet-dry and freeze-thaw durability, particularly when long-term durability is considered. 
	• The type, i.e. origin and chemical composition, of the quarry by-product material can have a significant impact on the wet-dry and freeze-thaw durability, particularly when long-term durability is considered. 
	Table 4.5
	Table 4.5

	 presents the chemical composition of QB2 and QB3 materials determined by X-Ray Fluorescence (XRF). QB materials with more dolomitic fines, i.e. higher magnesium oxide (MgO) contents, can develop higher strength gain over time and can thus contribute to better long-term durability. This is clearly seen by comparing the durability results for cement-stabilized samples of QB2 and QB3. Since the grain size distributions are quite similar for both QB2 and QB3, the chemical composition is a main factor that can 



	Table 4.5. Chemical Composition of QB2 and QB3 Materials 
	QB Material 
	QB Material 
	QB Material 
	QB Material 
	QB Material 

	Crushing Stage 
	Crushing Stage 

	Composition by Weight (%) 
	Composition by Weight (%) 



	TBody
	TR
	CaO 
	CaO 

	MgO 
	MgO 

	SiO2 
	SiO2 

	Al2O3 
	Al2O3 

	Fe2O3 
	Fe2O3 

	K2O 
	K2O 


	QB2 
	QB2 
	QB2 

	Primary 
	Primary 

	54.7 
	54.7 

	36.7 
	36.7 

	6.2 
	6.2 

	0.8 
	0.8 

	0.8 
	0.8 

	0.4 
	0.4 


	TR
	Secondary 
	Secondary 

	48.5 
	48.5 

	33.4 
	33.4 

	14.1 
	14.1 

	1.6 
	1.6 

	0.9 
	0.9 

	0.8 
	0.8 


	TR
	Tertiary 
	Tertiary 

	50.4 
	50.4 

	34.2 
	34.2 

	11.8 
	11.8 

	1.1 
	1.1 

	0.9 
	0.9 

	0.7 
	0.7 


	TR
	Average 
	Average 

	51.2 
	51.2 

	34.8 
	34.8 

	10.7 
	10.7 

	1.2 
	1.2 

	0.9 
	0.9 

	0.6 
	0.6 


	QB3 
	QB3 
	QB3 

	Primary 
	Primary 

	58.7 
	58.7 

	11.0 
	11.0 

	23.2 
	23.2 

	4.4 
	4.4 

	1.1 
	1.1 

	0.8 
	0.8 


	TR
	Secondary 
	Secondary 

	71.4 
	71.4 

	10.1 
	10.1 

	14.3 
	14.3 

	2.0 
	2.0 

	1.0 
	1.0 

	0.6 
	0.6 


	TR
	Tertiary 
	Tertiary 

	71.4 
	71.4 

	9.5 
	9.5 

	14.8 
	14.8 

	2.2 
	2.2 

	0.8 
	0.8 

	0.6 
	0.6 


	TR
	Average 
	Average 

	67.2 
	67.2 

	10.2 
	10.2 

	17.4 
	17.4 

	2.9 
	2.9 

	1.0 
	1.0 

	0.7 
	0.7 




	 
	• The compacted density of the samples can also contribute to durability aspects, where samples with higher compacted densities are generally expected to be more durable. This was verified for the field samples extracted from C2S2, where specimen A had significantly lower achieved dry density than specimen B, and had significantly higher soil-cement loss 
	• The compacted density of the samples can also contribute to durability aspects, where samples with higher compacted densities are generally expected to be more durable. This was verified for the field samples extracted from C2S2, where specimen A had significantly lower achieved dry density than specimen B, and had significantly higher soil-cement loss 
	• The compacted density of the samples can also contribute to durability aspects, where samples with higher compacted densities are generally expected to be more durable. This was verified for the field samples extracted from C2S2, where specimen A had significantly lower achieved dry density than specimen B, and had significantly higher soil-cement loss 


	after 12 cycles of testing (see 
	after 12 cycles of testing (see 
	after 12 cycles of testing (see 
	after 12 cycles of testing (see 
	Table 4.4
	Table 4.4

	). Similarly, the field-extracted samples from C3S1 with cement-stabilized QB3 materials had a quite low field density of 110 pcf (17.3 kN/m3), which is comparatively lower than the laboratory measured MDD for this material combination (MDD = 129.9 pcf or 20.4 kN/m3). In addition to having lower dolomitic fines content linked to questionable long-term durability, the low density of samples extracted from C3S1 might have also contributed to the poor durability of the field-extracted samples. This was particu


	• All field-extracted and laboratory-molded samples passed the requirements of IDOT for wet-dry durability testing by accumulating less than 10% average soil-cement loss after 12 cycles of testing, except for the two field sections where fly ash was used as the chemical stabilizer. These two sections are C2S3 and C3S3 with fly ash–stabilized QB2/FRAP blend and fly ash–stabilized QB2, respectively. Comparing the durability test results of the field and laboratory samples, 3% cement stabilization resulted in 
	• All field-extracted and laboratory-molded samples passed the requirements of IDOT for wet-dry durability testing by accumulating less than 10% average soil-cement loss after 12 cycles of testing, except for the two field sections where fly ash was used as the chemical stabilizer. These two sections are C2S3 and C3S3 with fly ash–stabilized QB2/FRAP blend and fly ash–stabilized QB2, respectively. Comparing the durability test results of the field and laboratory samples, 3% cement stabilization resulted in 

	• The field-extracted samples were obtained from test sections that were exposed to harsh environmental conditions for nearly three years, indicating that they have experienced several cycles of freezing and thawing over three harsh winters and multiple cycles of wetting and drying due to moisture content fluctuations. Yet, the cement-stabilized field QB samples showed superior performance compared to the seven-day cured samples that were molded in the laboratory. On the other hand, the fly ash samples show
	• The field-extracted samples were obtained from test sections that were exposed to harsh environmental conditions for nearly three years, indicating that they have experienced several cycles of freezing and thawing over three harsh winters and multiple cycles of wetting and drying due to moisture content fluctuations. Yet, the cement-stabilized field QB samples showed superior performance compared to the seven-day cured samples that were molded in the laboratory. On the other hand, the fly ash samples show
	• The field-extracted samples were obtained from test sections that were exposed to harsh environmental conditions for nearly three years, indicating that they have experienced several cycles of freezing and thawing over three harsh winters and multiple cycles of wetting and drying due to moisture content fluctuations. Yet, the cement-stabilized field QB samples showed superior performance compared to the seven-day cured samples that were molded in the laboratory. On the other hand, the fly ash samples show
	Figure 4.7
	Figure 4.7

	 and 
	Figure 4.8
	Figure 4.8

	). It can be inferred that the strength/durability gain in cement-stabilized QB samples outweighs the deterioration due to climatic conditions, while cycles of wetting/drying and freezing/thawing incur more damage in Class C fly ash–stabilized samples that is not improved by long-term strength gain. It can also be inferred that the type and chemical composition of the fines can contribute to the chemical reactions; more cementation was observed with the dolomitic fines (QB2 vs. QB3) over time. 



	 
	 
	 
	Figure
	Figure 4.7. Average soil-cement loss at the last cycle (12th cycle) for wet-dry durability testing. 
	 
	 
	Figure
	Figure 4.8. Average soil-cement loss at the last cycle (12th cycle) for freeze-thaw durability testing. 
	CHAPTER 5: SUMMARY AND CONCLUSIONS 
	5.1 SUMMARY OF RESEARCH APPROACH 
	This report presented results from a study conducted at the Illinois Center for Transportation (ICT) and the Illinois Department of Transportation (IDOT) Central Bureau of Materials (CBM) focusing on the freeze-thaw and wet-dry durability behavior of chemically stabilized applications of Quarry By-products (QB) in flexible pavements. The base and subbase applications of QB studied involved 3% cement- or 10% fly ash–stabilized QB materials and QB blends with recycled coarse aggregates, namely Fractionated Re
	In total, 56 samples were tested for the wet-dry and freeze-thaw durability. Half of the samples were newly prepared samples in the laboratory, while the other half was extracted from seven full-scale field test sections studied through APT. Field samples were saw-cut into cuboid prisms having the dimensions of an inscribed cuboid in the standard Proctor mold. Freeze-thaw and wet-dry durability tests were conducted as per AASHTO T 136 and T 135, respectively. Both standards involve firm brushing of samples 
	All wet-dry durability samples survived the 12 cycles of wetting and drying required by the AASHTO T 135 standard test. For freeze-thaw durability testing by the AASHTO T 136 standard, some of the samples experienced layer separation and significant deterioration that prevented the completion of testing and further brushing of intact samples. In such occasions, the results for soil-cement loss were extrapolated by curve fitting the data to provide an estimate of the soil-cement loss after 12 freezing and th
	5.2 FINDINGS, CONCLUSIONS, AND RECOMMENDATIONS 
	In light of the investigation of the durability aspects of seven sustainable QB applications and the satisfactory wet-dry and freeze-thaw durability demonstrated for some of the material combinations, particularly for the field samples that were cured over a longer period of time, the following findings, conclusive remarks, and recommendations can be offered: 
	• Wet-dry durability resulted in lower percentages of soil-cement loss compared to freeze-thaw durability for most laboratory-molded and field-extracted samples. The AASHTO T 136 freeze-thaw durability testing procedure was found to be a harsh and destructive test for chemically stabilized QB materials and QB blends with FRAP/FRCA. Some of the material combinations that showed successful field performance under accelerated pavement testing failed to accumulate less than 10% of soil-cement loss after 12 cycl
	• Wet-dry durability resulted in lower percentages of soil-cement loss compared to freeze-thaw durability for most laboratory-molded and field-extracted samples. The AASHTO T 136 freeze-thaw durability testing procedure was found to be a harsh and destructive test for chemically stabilized QB materials and QB blends with FRAP/FRCA. Some of the material combinations that showed successful field performance under accelerated pavement testing failed to accumulate less than 10% of soil-cement loss after 12 cycl
	• Wet-dry durability resulted in lower percentages of soil-cement loss compared to freeze-thaw durability for most laboratory-molded and field-extracted samples. The AASHTO T 136 freeze-thaw durability testing procedure was found to be a harsh and destructive test for chemically stabilized QB materials and QB blends with FRAP/FRCA. Some of the material combinations that showed successful field performance under accelerated pavement testing failed to accumulate less than 10% of soil-cement loss after 12 cycl

	• All laboratory-molded samples and all cement-stabilized samples extracted from the field had satisfactory wet-dry durability. Fly ash–stabilized samples extracted from the field accumulated significantly higher soil-cement loss after 12 cycles, indicating a poor performance of fly ash. It can be concluded that fly ash–stabilized field sections were less durable and lost strength/durability with exposure to freeze-thaw and wet-dry cycles in the field for around three years. 
	• All laboratory-molded samples and all cement-stabilized samples extracted from the field had satisfactory wet-dry durability. Fly ash–stabilized samples extracted from the field accumulated significantly higher soil-cement loss after 12 cycles, indicating a poor performance of fly ash. It can be concluded that fly ash–stabilized field sections were less durable and lost strength/durability with exposure to freeze-thaw and wet-dry cycles in the field for around three years. 

	• Chemical composition of the QB material was found to have a significant effect on the durability of chemically stabilized QB applications, particularly when long-term durability is considered. QB2 material with more dolomitic QB fines, i.e. with higher magnesium oxide contents, had more long-term strength gain and better durability than QB3 material with higher calcium limestone fines. The cement-stabilized QB2 materials or QB2 blended with FRAP/FRCA benefited from higher dolomitic fines content and signi
	• Chemical composition of the QB material was found to have a significant effect on the durability of chemically stabilized QB applications, particularly when long-term durability is considered. QB2 material with more dolomitic QB fines, i.e. with higher magnesium oxide contents, had more long-term strength gain and better durability than QB3 material with higher calcium limestone fines. The cement-stabilized QB2 materials or QB2 blended with FRAP/FRCA benefited from higher dolomitic fines content and signi

	• Possible trends observed between durability and unconfined compressive strength characteristics of different material combinations were somewhat inconclusive. This warrants the need for further and more extensive investigations on the cementation type improvement observed with dolomitic fines and related mechanisms of long-term strength and durability characteristics. 
	• Possible trends observed between durability and unconfined compressive strength characteristics of different material combinations were somewhat inconclusive. This warrants the need for further and more extensive investigations on the cementation type improvement observed with dolomitic fines and related mechanisms of long-term strength and durability characteristics. 


	Given the satisfactory performance of the cement-stabilized field test sections in project ICT R27-168, and given the results from this durability study, particularly for the field extracted specimens, the following recommendations can be made for the proper implementation of the investigated QB pavement applications: 
	• QB test sections constructed from QB2 or QB2 blended with FRAP or FRCA and stabilized with cement have the highest potential for implementation. These test sections generally showed superior field performance and satisfactory wet-dry durability. The mix designs can be slightly altered to ensure freeze-thaw durability and sufficient unconfined compressive strengths are obtained. Cement-stabilized QB3 applications shall also be recommended for base and subbase layers, but proper field compaction is required
	• QB test sections constructed from QB2 or QB2 blended with FRAP or FRCA and stabilized with cement have the highest potential for implementation. These test sections generally showed superior field performance and satisfactory wet-dry durability. The mix designs can be slightly altered to ensure freeze-thaw durability and sufficient unconfined compressive strengths are obtained. Cement-stabilized QB3 applications shall also be recommended for base and subbase layers, but proper field compaction is required
	• QB test sections constructed from QB2 or QB2 blended with FRAP or FRCA and stabilized with cement have the highest potential for implementation. These test sections generally showed superior field performance and satisfactory wet-dry durability. The mix designs can be slightly altered to ensure freeze-thaw durability and sufficient unconfined compressive strengths are obtained. Cement-stabilized QB3 applications shall also be recommended for base and subbase layers, but proper field compaction is required


	• The use of FRAP or FRCA as a coarse aggregate forming the primary skeleton of the QB-FRAP/FRCA-cement mixes had positive effects on load carrying capacity and field performance. At the same time, the use of recycled coarse aggregates did not result in adverse loss of durability. Thus, the use of mix designs of QB and recycled coarse aggregates shall be encouraged as a successful and sustainable implementation alternative.  
	• The use of FRAP or FRCA as a coarse aggregate forming the primary skeleton of the QB-FRAP/FRCA-cement mixes had positive effects on load carrying capacity and field performance. At the same time, the use of recycled coarse aggregates did not result in adverse loss of durability. Thus, the use of mix designs of QB and recycled coarse aggregates shall be encouraged as a successful and sustainable implementation alternative.  
	• The use of FRAP or FRCA as a coarse aggregate forming the primary skeleton of the QB-FRAP/FRCA-cement mixes had positive effects on load carrying capacity and field performance. At the same time, the use of recycled coarse aggregates did not result in adverse loss of durability. Thus, the use of mix designs of QB and recycled coarse aggregates shall be encouraged as a successful and sustainable implementation alternative.  

	• The fly ash–stabilized applications of QB needs to be revisited before implementation. An adequate evaluation of the long-term durability aspects and factors contributing to the wet-dry and freeze-thaw durability of these applications were not fully achieved in this study. Based on the current findings, fly ash–stabilized QB applications shall be recommended for short-term improvements such as improved subgrade and subbase applications. Utilizing fly ash–stabilized QB mixes in base course applications req
	• The fly ash–stabilized applications of QB needs to be revisited before implementation. An adequate evaluation of the long-term durability aspects and factors contributing to the wet-dry and freeze-thaw durability of these applications were not fully achieved in this study. Based on the current findings, fly ash–stabilized QB applications shall be recommended for short-term improvements such as improved subgrade and subbase applications. Utilizing fly ash–stabilized QB mixes in base course applications req

	• Overall, the lightly stabilized applications of QB investigated in this project and the previous R27-168 project prove that the investigated QB applications are readily implementable. It is advisable that mix designs be checked for both durability and unconfined compressive strength results and a certain low percentage of cement, such as 3% by weight studied herein, adequately meet the strength and durability criteria prescribed in IDOT’s Standard Specifications for Road and Bridge Construction are met.  
	• Overall, the lightly stabilized applications of QB investigated in this project and the previous R27-168 project prove that the investigated QB applications are readily implementable. It is advisable that mix designs be checked for both durability and unconfined compressive strength results and a certain low percentage of cement, such as 3% by weight studied herein, adequately meet the strength and durability criteria prescribed in IDOT’s Standard Specifications for Road and Bridge Construction are met.  


	5.3 RECOMMENDATONS FOR FUTURE WORK 
	The wet-dry and freeze-thaw durability evaluations of QB and QB blended with recycled coarse aggregates for base and subbase applications studied in this project have shown several potentially successful applications of QB in pavements, especially with the satisfactory field performance trends that were observed for these stabilized base and subbase applications from the previous research project ICT-R27-168. However, certain aspects of this study may require further investigation. The following discussion 
	• There is a likely need to further investigate the effect of QB source on wet-dry and freeze-thaw durability for reassurance. Preliminary results from two QB sources (QB2 and QB3) indicated a significant effect of QB source on durability, despite the results of field evaluation, which indicated no significant differences in surface rut accumulation in test sections constructed with the same two sources in project ICT-R27-168. Given that only few replicate samples were investigated in this durability study 
	• There is a likely need to further investigate the effect of QB source on wet-dry and freeze-thaw durability for reassurance. Preliminary results from two QB sources (QB2 and QB3) indicated a significant effect of QB source on durability, despite the results of field evaluation, which indicated no significant differences in surface rut accumulation in test sections constructed with the same two sources in project ICT-R27-168. Given that only few replicate samples were investigated in this durability study 
	• There is a likely need to further investigate the effect of QB source on wet-dry and freeze-thaw durability for reassurance. Preliminary results from two QB sources (QB2 and QB3) indicated a significant effect of QB source on durability, despite the results of field evaluation, which indicated no significant differences in surface rut accumulation in test sections constructed with the same two sources in project ICT-R27-168. Given that only few replicate samples were investigated in this durability study 


	• There is a need to further investigate the effect of mix proportions of QB with coarse-recycled aggregates on wet-dry and freeze-thaw durability. This study has investigated the durability of samples with QB mixed with coarse fractions of RAP or RCA at a blending ratio of 70% QB with 30% FRAP or FRCA. Different mix proportions with other blending ratios that may provide better durability need to be studied. 
	• There is a need to further investigate the effect of mix proportions of QB with coarse-recycled aggregates on wet-dry and freeze-thaw durability. This study has investigated the durability of samples with QB mixed with coarse fractions of RAP or RCA at a blending ratio of 70% QB with 30% FRAP or FRCA. Different mix proportions with other blending ratios that may provide better durability need to be studied. 
	• There is a need to further investigate the effect of mix proportions of QB with coarse-recycled aggregates on wet-dry and freeze-thaw durability. This study has investigated the durability of samples with QB mixed with coarse fractions of RAP or RCA at a blending ratio of 70% QB with 30% FRAP or FRCA. Different mix proportions with other blending ratios that may provide better durability need to be studied. 

	• There is a need to investigate and better evaluate the effect of fly ash source and composition on the fly ash–stabilized mixtures, given that the fly ash used for the laboratory-molded and field-extracted samples might have had different chemical compositions. The durability of fly ash–stabilized layers/samples can vary widely depending on the source properties of fly ash, which was seen in the compared results of the laboratory-molded samples and field-extracted samples. A future research effort on this
	• There is a need to investigate and better evaluate the effect of fly ash source and composition on the fly ash–stabilized mixtures, given that the fly ash used for the laboratory-molded and field-extracted samples might have had different chemical compositions. The durability of fly ash–stabilized layers/samples can vary widely depending on the source properties of fly ash, which was seen in the compared results of the laboratory-molded samples and field-extracted samples. A future research effort on this

	• There is a pressing need to study the parent rock type/source and composition of QB fines on durability and field performance. This study has indicated that samples with QB2 having higher percentages of dolomitic fines benefited from higher magnesium oxide content for better long-term wet-dry and freeze-thaw durability. A comprehensive study is needed to investigate the effect of dolomitic aggregate QB composition and properties on the long-term cementation mechanism for the potential advantage of this by
	• There is a pressing need to study the parent rock type/source and composition of QB fines on durability and field performance. This study has indicated that samples with QB2 having higher percentages of dolomitic fines benefited from higher magnesium oxide content for better long-term wet-dry and freeze-thaw durability. A comprehensive study is needed to investigate the effect of dolomitic aggregate QB composition and properties on the long-term cementation mechanism for the potential advantage of this by
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	APPENDIX A: DETAILED WET-DRY DURABILITY TEST RESULTS 
	This appendix provides detailed results for the wet-dry durability testing. In total, 28 samples (14 laboratory and 14 field samples) were tested for wet-dry durability as per the AASHTO T 135 standard. Detailed results for the soil-cement loss (%) at each of the 12 cycles, and the cumulative brushed loss are provided for each sample. Note that the y-axis scales are different for each sample to better visualize the data. The following appendix consists of two figures and one table: 
	• Figure A.1
	• Figure A.1
	• Figure A.1
	• Figure A.1
	• Figure A.1

	 provides a compilation of wet-dry durability results for the seven material combinations for samples molded in the laboratory.  


	• Figure A.2
	• Figure A.2
	• Figure A.2
	• Figure A.2

	 provides a compilation of wet-dry durability results for the seven material combinations extracted from the field test sections constructed for ICT-R27-168. 


	• Table A.1
	• Table A.1
	• Table A.1
	• Table A.1

	 summarizes the final corrected moisture contents (%) for all laboratory and field wet-dry durability samples. 
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	Figure A.1. Compilation of wet-dry durability test results for laboratory-molded samples. 
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	Figure A.1 (Cont’d). Compilation of wet-dry durability test results for laboratory-molded samples. 
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	Figure A.1 (Cont’d). Compilation of wet-dry durability test results for laboratory-molded samples. 
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	Figure A.2. Compilation of wet-dry durability test results for field-extracted samples. 
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	Figure A.2 (Cont’d). Compilation of wet-dry durability test results for field-extracted samples. 
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	Figure A.2 (Cont’d). Compilation of wet-dry durability test results for field-extracted samples. 
	 
	Table A.1. Final Corrected Moisture Content (%) for Wet-Dry Durability Samples 
	Sample Name 
	Sample Name 
	Sample Name 
	Sample Name 
	Sample Name 

	Laboratory-Molded Samples 
	Laboratory-Molded Samples 

	Field-Extracted Samples 
	Field-Extracted Samples 



	TBody
	TR
	Specimen A 
	Specimen A 

	Specimen B 
	Specimen B 

	Specimen A 
	Specimen A 

	Specimen B 
	Specimen B 


	C2S1 
	C2S1 
	C2S1 

	1.15  
	1.15  

	1.19 
	1.19 

	0.86 
	0.86 

	0.87 
	0.87 


	C2S2_S 
	C2S2_S 
	C2S2_S 

	1.40 
	1.40 

	1.66 
	1.66 

	N/A 
	N/A 

	N/A 
	N/A 


	C2S2_R (C2S2) * 
	C2S2_R (C2S2) * 
	C2S2_R (C2S2) * 

	1.59 
	1.59 

	1.76 
	1.76 

	0.98 
	0.98 

	1.05 
	1.05 


	C2S3 
	C2S3 
	C2S3 

	0.52 
	0.52 

	0.47 
	0.47 

	0.16 
	0.16 

	0.20 
	0.20 


	C2S4 
	C2S4 
	C2S4 

	0.90 
	0.90 

	0.91 
	0.91 

	0.84 
	0.84 

	0.80 
	0.80 


	C3S1 
	C3S1 
	C3S1 

	0.88 
	0.88 

	0.93 
	0.93 

	0.83 
	0.83 

	0.87 
	0.87 


	C3S2 
	C3S2 
	C3S2 

	N/A** 
	N/A** 

	N/A** 
	N/A** 

	0.81 
	0.81 

	0.88 
	0.88 


	C3S3 
	C3S3 
	C3S3 

	0.31 
	0.31 

	0.36 
	0.36 

	0.06 
	0.06 

	0.06 
	0.06 


	* Laboratory samples for C2S2 are denoted C2S2_R to differentiate from C2S2_S. 
	* Laboratory samples for C2S2 are denoted C2S2_R to differentiate from C2S2_S. 
	* Laboratory samples for C2S2 are denoted C2S2_R to differentiate from C2S2_S. 
	** Same material combination as C2S4. Refer to the results for C2S4. 




	 
	 
	  
	APPENDIX B: DETAILED FREEZE-THAW DURABILITY TEST RESULTS 
	This appendix provides detailed results for the freeze-thaw durability testing. In total, 28 samples (14 laboratory and 14 field samples) were tested for freeze-thaw durability as per the AASHTO T 136 standard. Detailed results for the soil-cement loss (%) at each of the 12 cycles, and the cumulative brushed loss are provided for each sample. Note that the y-axis scales are different for each sample to better visualize the data. The following Appendix consists of two figures and one table: 
	• Figure B.1 (Cont’d)
	• Figure B.1 (Cont’d)
	• Figure B.1 (Cont’d)
	• Figure B.1 (Cont’d)
	• Figure B.1 (Cont’d)

	 provides a compilation of freeze-thaw durability results for the seven material combinations for samples molded in the laboratory. 


	• Figure B.2 
	• Figure B.2 
	• Figure B.2 
	• Figure B.2 

	provides a compilation of freeze-thaw durability results for the seven material combinations extracted from the field test sections constructed for R27-168. 


	• Table B.1
	• Table B.1
	• Table B.1
	• Table B.1

	 summarizes the final corrected moisture contents (%) for all laboratory and field freeze-thaw durability samples. 



	 
	 
	 
	 
	 
	 
	Figure

	 
	 
	Figure



	(a) C2S1_A: QB2 + FRAP + Cement 
	(a) C2S1_A: QB2 + FRAP + Cement 
	(a) C2S1_A: QB2 + FRAP + Cement 
	(a) C2S1_A: QB2 + FRAP + Cement 
	(a) C2S1_A: QB2 + FRAP + Cement 
	(a) C2S1_A: QB2 + FRAP + Cement 



	(b) C2S1_B: QB2 + FRAP + Cement 
	(b) C2S1_B: QB2 + FRAP + Cement 
	(b) C2S1_B: QB2 + FRAP + Cement 
	(b) C2S1_B: QB2 + FRAP + Cement 




	 
	 
	 
	Figure

	 
	 
	Figure


	(c) C2S2-S_A: QB2 + FRCA (- ¾ in.) + Cement 
	(c) C2S2-S_A: QB2 + FRCA (- ¾ in.) + Cement 
	(c) C2S2-S_A: QB2 + FRCA (- ¾ in.) + Cement 
	(c) C2S2-S_A: QB2 + FRCA (- ¾ in.) + Cement 
	(c) C2S2-S_A: QB2 + FRCA (- ¾ in.) + Cement 



	(d) C2S2-S_B: QB2 + FRCA (- ¾ in.) + Cement 
	(d) C2S2-S_B: QB2 + FRCA (- ¾ in.) + Cement 
	(d) C2S2-S_B: QB2 + FRCA (- ¾ in.) + Cement 
	(d) C2S2-S_B: QB2 + FRCA (- ¾ in.) + Cement 




	Figure B.1. Compilation of freeze-thaw durability test results for laboratory-molded samples. 
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	Figure B.1 (Cont’d). Compilation of freeze-thaw durability test results for  laboratory-molded samples. 
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	Figure B.1 (Cont’d). Compilation of freeze-thaw durability test results for  laboratory-molded samples. 
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	(b) C2S1_B: QB2 + FRAP + Cement 




	 
	 
	 
	Figure

	 
	 
	Figure


	(c) C2S2_A: QB2 + FRCA + Cement 
	(c) C2S2_A: QB2 + FRCA + Cement 
	(c) C2S2_A: QB2 + FRCA + Cement 
	(c) C2S2_A: QB2 + FRCA + Cement 
	(c) C2S2_A: QB2 + FRCA + Cement 



	(d) C2S2_B: QB2 + FRCA + Cement 
	(d) C2S2_B: QB2 + FRCA + Cement 
	(d) C2S2_B: QB2 + FRCA + Cement 
	(d) C2S2_B: QB2 + FRCA + Cement 
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	Figure


	(e) C2S3_A: QB2 + FRAP + Fly Ash 
	(e) C2S3_A: QB2 + FRAP + Fly Ash 
	(e) C2S3_A: QB2 + FRAP + Fly Ash 
	(e) C2S3_A: QB2 + FRAP + Fly Ash 
	(e) C2S3_A: QB2 + FRAP + Fly Ash 



	(f) C2S3_B: QB2 + FRAP + Fly Ash 
	(f) C2S3_B: QB2 + FRAP + Fly Ash 
	(f) C2S3_B: QB2 + FRAP + Fly Ash 
	(f) C2S3_B: QB2 + FRAP + Fly Ash 




	Figure B.2. Compilation of freeze-thaw durability test results for field-extracted samples. 
	Figure B.2. Compilation of freeze-thaw durability test results for field-extracted samples. 
	Figure B.2. Compilation of freeze-thaw durability test results for field-extracted samples. 




	 
	 
	 
	 
	 
	Figure

	 
	 
	Figure


	(g) C2S4_A: QB2 + Cement 
	(g) C2S4_A: QB2 + Cement 
	(g) C2S4_A: QB2 + Cement 
	(g) C2S4_A: QB2 + Cement 
	(g) C2S4_A: QB2 + Cement 



	(h) C2S4_B: QB2 + Cement 
	(h) C2S4_B: QB2 + Cement 
	(h) C2S4_B: QB2 + Cement 
	(h) C2S4_B: QB2 + Cement 
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	Figure


	(i) C3S1_A: QB3 + Cement 
	(i) C3S1_A: QB3 + Cement 
	(i) C3S1_A: QB3 + Cement 
	(i) C3S1_A: QB3 + Cement 
	(i) C3S1_A: QB3 + Cement 



	(j) C3S1_B: QB3 + Cement 
	(j) C3S1_B: QB3 + Cement 
	(j) C3S1_B: QB3 + Cement 
	(j) C3S1_B: QB3 + Cement 
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	Figure


	(k) C3S2_A: QB2 + Cement 
	(k) C3S2_A: QB2 + Cement 
	(k) C3S2_A: QB2 + Cement 
	(k) C3S2_A: QB2 + Cement 
	(k) C3S2_A: QB2 + Cement 



	(l) C3S2_B: QB2 + Cement 
	(l) C3S2_B: QB2 + Cement 
	(l) C3S2_B: QB2 + Cement 
	(l) C3S2_B: QB2 + Cement 




	Figure B.2 (Cont’d). Compilation of freeze-thaw durability test results for field-extracted samples. 
	Figure B.2 (Cont’d). Compilation of freeze-thaw durability test results for field-extracted samples. 
	Figure B.2 (Cont’d). Compilation of freeze-thaw durability test results for field-extracted samples. 




	 
	 
	 
	 
	 
	Figure

	 
	 
	Figure


	(m) C3S3_A: QB2 + Fly Ash 
	(m) C3S3_A: QB2 + Fly Ash 
	(m) C3S3_A: QB2 + Fly Ash 
	(m) C3S3_A: QB2 + Fly Ash 
	(m) C3S3_A: QB2 + Fly Ash 



	(n) C3S3_B: QB2 + Fly Ash 
	(n) C3S3_B: QB2 + Fly Ash 
	(n) C3S3_B: QB2 + Fly Ash 
	(n) C3S3_B: QB2 + Fly Ash 






	Figure B.2 (Cont’d). Compilation of freeze-thaw durability test results for field-extracted samples. 
	 
	 
	Table B.1. Final Corrected Moisture Content (%) for Freeze-Thaw Durability Samples 
	Sample Name 
	Sample Name 
	Sample Name 
	Sample Name 
	Sample Name 

	Laboratory-Molded Samples 
	Laboratory-Molded Samples 

	Field-Extracted Samples 
	Field-Extracted Samples 



	TBody
	TR
	Specimen A 
	Specimen A 

	Specimen B 
	Specimen B 

	Specimen A 
	Specimen A 

	Specimen B 
	Specimen B 


	C2S1 
	C2S1 
	C2S1 

	11.8 
	11.8 

	11.8 
	11.8 

	11.6 
	11.6 

	11.1 
	11.1 


	C2S2_S 
	C2S2_S 
	C2S2_S 

	13.6 
	13.6 

	13.6 
	13.6 

	N/A 
	N/A 

	N/A 
	N/A 


	C2S2_R (C2S2) * 
	C2S2_R (C2S2) * 
	C2S2_R (C2S2) * 

	13.2 
	13.2 

	13.2 
	13.2 

	13.4 
	13.4 

	9.8 
	9.8 


	C2S3 
	C2S3 
	C2S3 

	8.8 
	8.8 

	8.8 
	8.8 

	9.4 
	9.4 

	9.6 
	9.6 


	C2S4 
	C2S4 
	C2S4 

	11.6 
	11.6 

	11.6 
	11.6 

	9.0 
	9.0 

	9.0 
	9.0 


	C3S1 
	C3S1 
	C3S1 

	11.8 
	11.8 

	11.4 
	11.4 

	16.2 
	16.2 

	15.7 
	15.7 


	C3S2 
	C3S2 
	C3S2 

	N/A** 
	N/A** 

	N/A** 
	N/A** 

	7.5 
	7.5 

	8.0 
	8.0 


	C3S3 
	C3S3 
	C3S3 

	9.3 
	9.3 

	9.3 
	9.3 

	9.2 
	9.2 

	8.8 
	8.8 


	* Laboratory samples for C2S2 are denoted C2S2_R to differentiate from C2S2_S. 
	* Laboratory samples for C2S2 are denoted C2S2_R to differentiate from C2S2_S. 
	* Laboratory samples for C2S2 are denoted C2S2_R to differentiate from C2S2_S. 
	** Same material combination as C2S4. Refer to the results for C2S4. 
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